首页> 美国卫生研究院文献>PLoS Clinical Trials >Identification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm
【2h】

Identification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm

机译:使用新的序列后比对处理算法DVG-profiler对高通量测序数据中的缺陷病毒基因组进行鉴定和定量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Most viruses are known to spontaneously generate defective viral genomes (DVG) due to errors during replication. These DVGs are subgenomic and contain deletions that render them unable to complete a full replication cycle in the absence of a co-infecting, non-defective helper virus. DVGs, especially of the copyback type, frequently observed with paramyxoviruses, have been recognized to be important triggers of the antiviral innate immune response. DVGs have therefore gained interest for their potential to alter the attenuation and immunogenicity of vaccines. To investigate this potential, accurate identification and quantification of DVGs is essential. Conventional methods, such as RT-PCR, are labor intensive and will only detect primer sequence-specific species. High throughput sequencing (HTS) is much better suited for this undertaking. Here, we present an HTS-based algorithm called DVG-profiler to identify and quantify all DVG sequences in an HTS data set generated from a virus preparation. DVG-profiler identifies DVG breakpoints relative to a reference genome and reports the directionality of each segment from within the same read. The specificity and sensitivity of the algorithm was assessed using both in silico data sets as well as HTS data obtained from parainfluenza virus 5, Sendai virus and mumps virus preparations. HTS data from the latter were also compared with conventional RT-PCR data and with data obtained using an alternative algorithm. The data presented here demonstrate the high specificity, sensitivity, and robustness of DVG-profiler. This algorithm was implemented within an open source cloud-based computing environment for analyzing HTS data. DVG-profiler might prove valuable not only in basic virus research but also in monitoring live attenuated vaccines for DVG content and to assure vaccine lot to lot consistency.
机译:由于复制过程中的错误,已知大多数病毒会自发产生缺陷的病毒基因组(DVG)。这些DVG是亚基因组的,并且包含缺失,使得它们在没有共感染,无缺陷的辅助病毒的情况下无法完成完整的复制周期。 DVG,尤其是副粘病毒经常观察到的复写型,已被认为是抗病毒先天免疫反应的重要诱因。 DVG因其改变疫苗的减毒和免疫原性的潜力而引起人们的兴趣。为了研究这种潜力,准确鉴定和定量DVG是必不可少的。常规方法(例如RT-PCR)需要大量劳动,并且只能检测引物序列特异性物种。高通量测序(HTS)更适合此任务。在这里,我们介绍了一种基于HTS的算法,称为DVG-profiler,用于识别和量化从病毒制备物产生的HTS数据集中的所有DVG序列。 DVG-profiler识别相对于参考基因组的DVG断点,并从同一读数中报告每个片段的方向性。使用计算机模拟数据集以及从副流感病毒5,仙台病毒和腮腺炎病毒制剂获得的HTS数据评估算法的特异性和敏感性。还将来自后者的HTS数据与常规RT-PCR数据以及使用替代算法获得的数据进行了比较。此处提供的数据证明了DVG-profiler的高特异性,灵敏度和耐用性。该算法在用于分析HTS数据的基于开源云的计算环境中实现。 DVG-profiler可能不仅在基础病毒研究中而且在监测减毒活疫苗中DVG含量并确保疫苗批次间一致性方面均具有重要价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号