首页> 美国卫生研究院文献>PLoS Clinical Trials >Combining Optimal Control Theory and Molecular Dynamics for Protein Folding
【2h】

Combining Optimal Control Theory and Molecular Dynamics for Protein Folding

机译:结合最优控制理论和分子动力学进行蛋白质折叠

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.
机译:提出了一种开发蛋白质低能折叠途径的新方法。提出的方法的新颖方面是最优控制理论与分子动力学(MD)的协同使用。在该方法的第一步中,采用最佳控制理论来计算粗粒(CG)蛋白质模型的原子的力场和最佳折叠轨迹。 CG优化的解决方案提供了原始状态周围真实势能面的谐波近似。下一步,CG优化将通过指定原子的最佳目标位置来指导MD模拟。反过来,MD模拟提供了一个全原子构象,其位置与通过CG优化确定的参考目标位置紧密匹配。这是通过有针对性的分子动力学(TMD)来实现的,该分子除常规的MD电位外还使用偏压或谐波抑制。折叠是一个动态过程,因此残留物在折叠过程中会产生不同的接触。因此,CG优化必须重新初始化并随时间重复以适应这些重要的变化。在每个采样的折叠时间,基于从MD获得的全原子构象,重新计算残基之间的活性接触。使用新的一组触点,更新了CG势,并重新计算了原子的CG最佳轨迹。随后是MD。执行此重复CG优化-MD仿真循环会生成折叠轨迹。对模型蛋白Villin的仿真证明了该方法的实用性。由于该方法基于最优控制理论和MD的通用工具而没有任何限制,因此可广泛应用于其他系统。可以使用可用的MD软件包轻松实现。

著录项

  • 期刊名称 PLoS Clinical Trials
  • 作者

    Yaman Arkun; Mert Gur;

  • 作者单位
  • 年(卷),期 2009(7),1
  • 年度 2009
  • 页码 e29628
  • 总页数 8
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号