首页> 美国卫生研究院文献>PLoS Clinical Trials >Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution
【2h】

Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

机译:通用序列复制,可逆聚合和早期功能性生物聚合物:益生元序列进化的起始模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities.
机译:许多关于生命起源的模型都集中于了解进化如何驱动现有酶的精炼,例如有效复制酶活性的进化。在这里,我们提出了一个模型,该模型可以说是化学进化的一个早期阶段,当聚合物序列多样性在功能选择开始之前和之中产生并维持。该模型包括规则的环境周期(例如水合-脱水周期),该周期在复制时间和功能活性之间驱动聚合物,这与不同单体和聚合物扩散性的时间一致。在每个循环的脱水阶段发生的信息聚合物的模板定向复制被认为是序列无关的。新的序列是通过自发形成的聚合物生成的,并且所有序列都在争夺有限的单体资源,该资源通过可逆聚合进行回收。动力学蒙特卡洛模拟表明,该拟议的益生元方案为探索序列空间提供了可靠的机制。具有单体合成酶活性的聚合物序列的引入说明功能序列可以在原本存在的其他非功能序列库中建立。功能选择不能控制系统动力学,序列多样性仍然很高,从而可以出现和扩展多个功能序列。还可以观察到,在模拟中聚合物自发形成簇,其中聚合物比单体扩散得更慢,这一特征使人想起了以前的提议,即生命的最早阶段可能是由聚合物在全系统范围内的共同进化所定义的。聚集体。总体而言,给出的结果证明了考虑合理的益生元聚合物化学性质和环境的优点,这些化学物质和环境将允许单体资源的快速周转和定期改变的单体/聚合物扩散率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号