首页> 美国卫生研究院文献>PLoS Clinical Trials >Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network
【2h】

Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network

机译:基于光学流的导航的神经动作场:蝇Lo板网络的仿真研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optic flow based navigation is a fundamental way of visual course control described in many different species including man. In the fly, an essential part of optic flow analysis is performed in the lobula plate, a retinotopic map of motion in the environment. There, the so-called lobula plate tangential cells possess large receptive fields with different preferred directions in different parts of the visual field. Previous studies demonstrated an extensive connectivity between different tangential cells, providing, in principle, the structural basis for their large and complex receptive fields. We present a network simulation of the tangential cells, comprising most of the neurons studied so far (22 on each hemisphere) with all the known connectivity between them. On their dendrite, model neurons receive input from a retinotopic array of Reichardt-type motion detectors. Model neurons exhibit receptive fields much like their natural counterparts, demonstrating that the connectivity between the lobula plate tangential cells indeed can account for their complex receptive field structure. We describe the tuning of a model neuron to particular types of ego-motion (rotation as well as translation around/along a given body axis) by its ‘action field’. As we show for model neurons of the vertical system (VS-cells), each of them displays a different type of action field, i.e., responds maximally when the fly is rotating around a particular body axis. However, the tuning width of the rotational action fields is relatively broad, comparable to the one with dendritic input only. The additional intra-lobula-plate connectivity mainly reduces their translational action field amplitude, i.e., their sensitivity to translational movements along any body axis of the fly.
机译:基于光学流的导航是在包括人类在内的许多不同物种中描述的可视过程控制的基本方式。在飞行中,在小叶板中进行光流分析的重要部分,小叶板是环境中运动的视网膜视点图。在那里,所谓的小叶板切向细胞在视野的不同部分具有较大的接受场,并具有不同的优选方向。先前的研究表明,不同的切向细胞之间具有广泛的连通性,原则上为其大而复杂的受体场提供了结构基础。我们介绍了切向细胞的网络模拟,包括迄今为止研究的大多数神经元(每个半球上的22个神经元)以及它们之间的所有已知连通性。在其树突上,模型神经元从Reichardt型运动检测器的视网膜排列阵列接收输入。模型神经元表现出的感受野非常像它们的自然对应物,表明小叶板切向细胞之间的连通性确实可以解释其复杂的感受野结构。我们通过“动作场”描述了模型神经元针对特定类型的自我运动(旋转以及围绕/沿给定身体轴的平移)的调整。正如我们为垂直系统(VS细胞)的模型神经元所展示的那样,它们中的每一个都显示不同类型的作用场,即,当果蝇围绕特定的身体轴旋转时,它们的响应最大。但是,旋转作用场的调谐宽度相对较宽,可与仅具有树突状输入的情况相比。额外的小叶板内连通性主要降低了它们的平移作用场振幅,即,它们对沿蝇的任何身体轴的平移运动的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号