首页> 美国卫生研究院文献>PLoS Clinical Trials >N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required forN-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus
【2h】

N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required forN-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus

机译:需要N-乙酰氨基葡萄糖6-磷酸脱乙酰酶(nagA)N-乙酰氨基葡萄糖同化在葡糖杆菌中。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting tetracycline resistant gene (nagA::tetr; named as ΔnagA) via homologous recombination. When compared to glucose fed conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular composition under GlcNAc fed conditions. We conclude that nagA playsan essential role for GlcNAc assimilation by G. xylinus thus isrequired for the growth and survival for the bacterium in presence of GlcNAc ascarbon source. Additionally, G. xylinus appears to possess thesame molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors asother related bacterial species.
机译:氨基糖(N-乙酰氨基葡萄糖; GlcNAc和氨基葡萄糖; Gln)的代谢途径至关重要,并且在所有三个生命王国(即微生物,植物和动物)中都基本上保持保守。摄取后,这些氨基酸在细胞质中被磷酸激酶磷酸化,随后被N-乙酰氨基葡糖6-磷酸脱乙酰酶(nagA)脱乙酰化,生成6-磷酸葡糖胺和乙酸盐,这是GlcNAc同化和氨基-糖化的第一步。糖核苷酸的生物合成。在这里,我们报道了编码部分nagA基因的DNA片段的克隆及其对纤维素生产细菌木糖葡糖杆菌(正式称为木醋杆菌)中氨基糖代谢的影响。为此,通过同源重组通过插入四环素抗性基因(nagA :: tet r ;命名为ΔnagA)来破坏nagA。与葡萄糖喂养条件相比,nagA突变体完全抑制了UDP-GlcNAc的合成和细菌生长(由于缺乏GlcNAc的利用)。有趣的是,在GlcNAc进料条件下,这种抑制作用不会损害纤维素的生产效率及其分子组成。我们得出结论,nagA扮演因此,木霉对GlcNAc的同化作用至关重要。在GlcNAc存在下细菌生长和存活所必需的碳源。此外,木霉菌似乎拥有由GlcNAc前体合成UDP-GlcNAc的分子机制与其他相关细菌种类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号