首页> 美国卫生研究院文献>PLoS Clinical Trials >A Genetic Screen in Drosophila Reveals Novel Cytoprotective Functions of the Autophagy-Lysosome Pathway
【2h】

A Genetic Screen in Drosophila Reveals Novel Cytoprotective Functions of the Autophagy-Lysosome Pathway

机译:果蝇的遗传筛选揭示了自噬-溶酶体途径的新型细胞保护功能。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61α), and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1). We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.
机译:高度保守的自噬-溶酶体途径是真核细胞中大分子和细胞器货物分解和再循环的主要机制。自噬最近与癌症,神经退行性疾病和感染的保护有关,自噬在人类健康,疾病和衰老中的其他作用越来越引起人们的兴趣。为了寻找该途径的新的细胞保护特征,我们进行了遗传镶嵌筛选,寻找导致果蝇果蝇幼虫脂肪体内溶酶体和/或自噬活性增加的突变。通过将果蝇遗传学与荧光染料LysoTracker Red的活细胞成像和自噬特异性荧光蛋白标记物的固定细胞成像相结合,设计了筛选筛查必需的后生动物基因,这些基因的破坏会导致通过自噬溶酶体途径的通量增加。该筛查确定了大量与蛋白质合成和ER分泌途径相关的基因(例如氨酰基tRNA合成酶,寡糖转移酶,Sec61α)以及线粒体功能和动力学(例如Rieske铁硫蛋白,与动力蛋白相关的蛋白1) 。我们还观察到溶酶体和自噬活性的增加与细胞大小的减少始终相关。我们的工作表明,在多个步骤中的任何一个步骤中,ER靶向蛋白的合成,转运,折叠或糖基化破坏都会导致自噬诱导。除了阐明对细胞损伤反应的自噬的细胞保护功能外,该筛选还建立了一种遗传学方法,用于研究活的野生型生物体中活细胞中的细胞生物学表型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号