首页> 美国卫生研究院文献>PLoS Clinical Trials >A Conceptual Mathematical Model of the Dynamic Self-Organisation of Distinct Cellular Organelles
【2h】

A Conceptual Mathematical Model of the Dynamic Self-Organisation of Distinct Cellular Organelles

机译:不同细胞器动态自组织的概念数学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Formation, degradation and renewal of cellular organelles is a dynamic process based on permanent budding, fusion and inter-organelle traffic of vesicles. These processes include many regulatory proteins such as SNAREs, Rabs and coats. Given this complex machinery, a controversially debated issue is the definition of a minimal set of generic mechanisms necessary to enable the self-organization of organelles differing in number, size and chemical composition. We present a conceptual mathematical model of dynamic organelle formation based on interacting vesicles which carry different types of fusogenic proteins (FP) playing the role of characteristic marker proteins. Our simulations (ODEs) show that a de novo formation of non-identical organelles, each accumulating a different type of FP, requires a certain degree of disproportionation of FPs during budding. More importantly however, the fusion kinetics must indispensably exhibit positive cooperativity among these FPs, particularly for the formation of larger organelles. We compared different types of cooperativity: sequential alignment of corresponding FPs on opposite vesicle/organelles during fusion and pre-formation of FP-aggregates (equivalent, e.g., to SNARE clusters) prior to fusion described by Hill kinetics. This showed that the average organelle size in the system is much more sensitive to the disproportionation strength of FPs during budding if the vesicular transport system gets along with a fusion mechanism based on sequential alignments of FPs. Therefore, pre-formation of FP aggregates within the membranes prior to fusion introduce robustness with respect to organelle size. Our findings provide a plausible explanation for the evolution of a relatively large number of molecules to confer specificity on the fusion machinery compared to the relatively small number involved in the budding process. Moreover, we could speculate that a specific cooperativity which may be described by Hill kinetics (aggregates or Rab/SNARE complex formation) is suitable if maturation/identity switching of organelles play a role (bistability).
机译:细胞器的形成,降解和更新是基于囊泡的永久出芽,融合和细胞间运输的动态过程。这些过程包括许多调节蛋白,例如SNARE,Rabs和外壳。鉴于这种复杂的机制,一个有争议的问题是定义了使数量,大小和化学组成不同的细胞器自组织所必需的最小通用机制集。我们提出了基于相互作用的囊泡的动态细胞器形成的概念数学模型,所述囊泡携带不同类型的融合蛋白(FP),发挥特征性标记蛋白的作用。我们的模拟(ODE)表明,从头开始形成不相同的细胞器,每个细胞器积累不同类型的FP,在萌芽过程中需要一定程度的FP歧化。然而,更重要的是,在这些FP之间,融合动力学必须必不可少地表现出正的协同作用,特别是对于形成较大的细胞器而言。我们比较了不同类型的协同性:融合过程中相应FP在相对囊泡/细胞器上的顺序排列和FP聚集体的预先形成(相当于SNARE簇),然后按照Hill动力学描述进行融合。这表明,如果囊泡转运系统与基于FP的顺序排列的融合机制相融,则系统中的平均细胞器大小对FP在萌芽期间的歧化强度要敏感得多。因此,融合之前在膜内FP聚集体的预形成相对于细胞器大小引入了稳健性。我们的发现为与萌芽过程中涉及的相对少量分子相比,相对大量的分子进化赋予融合机制特异性提供了合理的解释。此外,我们可以推测,如果细胞器的成熟/身份转换起作用(双稳性),则可以用希尔动力学(聚集体或Rab / SNARE复合物的形成)描述的特定合作性是合适的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号