首页> 美国卫生研究院文献>PLoS Clinical Trials >Horizontal Gene Transfer Regulation in Bacteria as a Spandrel of DNA Repair Mechanisms
【2h】

Horizontal Gene Transfer Regulation in Bacteria as a Spandrel of DNA Repair Mechanisms

机译:细菌中水平基因转移调控作为DNA修复机制的散发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic “hot spots”, which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination “hot-spots” to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.
机译:水平基因转移(HGT)被认为是细菌基因组进化的主要力量。然而,关于转移的基因,其功能,数量和频率仍然存在许多疑问。最初是通过计算机科学方法,使用茄形青枯菌(Ralstonia solanacearum)GMI1000菌株的完整基因组序列,通过计算机方法解决了在进化过程中外源DNA发生遗传转化的程度。基于原核生物同源基因家族的系统发育重建的方法,在青枯菌基因组中检测到151个外源基因(13.3%),并初步确定了其细菌来源。与涉及基因组中18个不同基因组DNA位置作为同源或同源重组位点的实验转化测试相比,分析了这些推定的转移。不论接受受体测试的青枯菌菌株的总体基因组差异如何,在这些测试位置之间均观察到了显着的转化频率差异。包含推定外源DNA的基因组位置未在最高频率下系统地转化。包含recA和mutS基因的两个基因组“热点”显示出的转化频率比与其他基因相关的位置高2到4个数量级以上,具体取决于受体菌株。这些结果支持以下观点:细菌细胞具有在不同基因组位置调节新DNA采集的活性机制。生物信息学研究将重组“热点”与可能优先启动重组的Chi样特征序列相关。 HGT的基本作用当然不限于主要是偶然获得的非常罕见的外源基因可能对细菌适应潜力产生关键影响。 HGT含有同源和同源DNA的频率在环境中发生的频率可能已导致细菌劫持DNA修复机制,以产生遗传多样性而又不会失去太多的基因组稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号