首页> 美国卫生研究院文献>Journal of Neural Transplantation >Intrinsic and Extrinsic Neuronal Mechanisms in Temporal Coding: A Further Look at Neuronal Oscillations
【2h】

Intrinsic and Extrinsic Neuronal Mechanisms in Temporal Coding: A Further Look at Neuronal Oscillations

机译:时间编码中的内在和外在神经元机制:进一步观察神经元的振荡。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many studies in recent years have been devoted to the detection of fast oscillations in the Central Nervous System (CNS), interpreting them as synchronizing devices. We should, however, refrain from associating too closely the two concepts of synchronization and oscillation. Whereas synchronization is a relatively well-defined concept, by contrast oscillation of a population of neurones in the CNS looks loosely defined, in the sense that both its frequency sharpness and the duration of the oscillatory episodes vary widely from case to case. Also, the functions of oscillations in the brain are multiple and are not confined to synchronization. The paradigmatic instantiation of oscillation in physics is given by the harmonic oscillator, a device particularly suited to tell the time, as in clocks. We will thus examine first the case of oscillations or cycling discharges of neurones, which provide a clock or impose a “tempo” for various kinds of information processing. Neuronal oscillators are rarely just clocks clicking at a fixed frequency. Instead, their frequency is often adjustable and controllable, as in the example of the “chattering cells” discovered in the superficial layers of the visual cortex. Moreover, adjustable frequency oscillators are suitable for use in “phase locked loops” (PLL) networks, a device that can convert time coding to frequency coding; such PLL units have been found in the somatosensory cortex of guinea pigs. Finally, are oscillations stricto sensu necessary to induce synchronization in the discharges of downstream neurones? We know that this is not the case, at least not for local populations of neurones. As a contribution to this question, we propose that repeating patterns in neuronal discharges production may be looked at as one such alternative solution in relation to the processing of information. We review here the case of precisely repeating triplets, detected in the discharges of olfactory mitral cells of a freely breathing rat under odor stimulation.
机译:近年来,许多研究致力于检测中枢神经系统(CNS)中的快速振荡,并将其解释为同步设备。但是,我们应该避免将同步和振荡这两个概念过于紧密地联系在一起。尽管同步是一个相对明确定义的概念,但与此相反,CNS中神经元群体的振荡看起来松散地定义了,从某种意义上说,其频率锐度和振荡发作的持续时间都因情况而异。而且,大脑中的振荡功能是多重的,并不局限于同步。物理学中振荡的范例化实例由谐波振荡器给出,谐波振荡器是一种特别适合于显示时间的设备,如时钟。因此,我们将首先检查神经元振荡或循环放电的情况,这些情况会为各种信息处理提供时钟或施加“节奏”。神经元振荡器很少只是以固定频率点击时钟。取而代之的是,它们的频率通常是可调节和可控制的,例如在视觉皮层的表层发现的“破碎细胞”的例子。此外,可调频率振荡器适用于“锁相环”(PLL)网络,该设备可以将时间编码转换为频率编码。在豚鼠的体感皮层中发现了这种PLL单元。最后,为了引起下游神经元放电同步,是否需要严格的振荡?我们知道情况并非如此,至少对于本地神经元人群而言并非如此。作为对此问题的贡献,我们建议将神经元放电产生中的重复模式视为一种与信息处理相关的替代解决方案。我们在这里回顾了在气味刺激下自由呼吸的大鼠的嗅二叶细胞分泌物中检测到的精确重复三胞胎的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号