首页> 美国卫生研究院文献>The Journal of Biophysical and Biochemical Cytology >Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock
【2h】

Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock

机译:高渗性休克后杜氏盐藻超微结构和膜磷脂代谢的同时变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperosmotic shock, induced by raising the NaCl concentration of Dunaliella salina medium from 1.71 to 3.42 M, elicited a rapid decrease of nearly one-third in whole cell volume and in the volume of intracellular organelles. The decrease in cell volume was accompanied by plasmalemma infolding without overall loss of surface area. This contrasts with the dramatic increase in plasmalemma surface area after hypoosmotic shock (Maeda, M., and G. A. Thompson. 1986. J. Cell Biol. 102:289-297). Although plasmalemma surface area remained constant after hyperosmotic shock, the nucleus, chloroplast, and mitochondria lost membrane surface area, apparently through membrane fusion with the endoplasmic reticulum. Thus the endoplasmic reticulum serves as a reservoir for excess membrane during hyperosmotic stress, reversing its role as membrane donor to the same organelles during hypoosmotically induced cell expansion. Hyperosmotic shock also induced rapid changes in phospholipid metabolism. The mass of phosphatidic acid dropped to 56% of control and that of phosphatidylinositol 4,5-bisphosphate rose to 130% of control within 4 min. Further analysis demonstrated that within 10 min after hyperosmotic shock, there was 2.5-fold increase in phosphatidylcholine turnover, a twofold increase in lysophosphatidylcholine mass, a four-fold increase in lysophosphatidate mass, and an elevation in free fatty acids to 124% of control, all observations suggesting activation of phospholipase A. The observed biophysical and biochemical phenomena are likely to be causally interrelated in providing mechanisms for successful accommodation to such severe osmotic extremes.
机译:高渗性休克是通过将杜氏盐藻培养基的NaCl浓度从1.71 M提高到3.42 M引起的,导致全细胞体积和细胞内细胞器体积迅速减少了近三分之一。细胞体积的减少伴随着血浆的折叠,而没有表面积的整体损失。这与低渗性休克后血浆膜表面积的急剧增加形成对比(Maeda,M。和G.A.Thompson.1986.J.Cell Biol.102:289-297)。尽管高渗性休克后血浆膜的表面积保持恒定,但核,叶绿体和线粒体的膜表面积却明显丢失,这显然是通过与内质网的膜融合。因此,内质网在高渗应激期间充当多余膜的储存器,从而在低渗诱导的细胞扩张过程中逆转了其作为同一细胞器的膜供体的作用。高渗性休克还引起磷脂代谢的快速变化。磷脂酸的质量下降至对照的56%,而磷脂酰肌醇4,5-二磷酸的质量在4分钟内上升至对照的130%。进一步的分析表明,高渗性休克后10分钟内,磷脂酰胆碱的周转量增加了2.5倍,溶血磷脂酰胆碱的量增加了2倍,溶血磷脂酸的量增加了4倍,游离脂肪酸增加到对照的124%,所有观察结果都表明磷脂酶A的活化。所观察到的生物物理和生化现象可能在为成功适应这种严重的渗透性极端事件提供机制方面具有因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号