首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Understanding How the Complex Molecular Architecture of Mannan-degrading Hydrolases Contributes to Plant Cell Wall Degradation
【2h】

Understanding How the Complex Molecular Architecture of Mannan-degrading Hydrolases Contributes to Plant Cell Wall Degradation

机译:了解甘露聚糖降解水解酶的复杂分子结构如何促进植物细胞壁降解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.
机译:植物细胞壁的微生物降解是碳循环的重要组成部分,在对环境有重要意义的行业中正变得越来越重要。植物细胞壁降解酶具有复杂的分子结构,该结构由催化模块组成,并且通常由多个非催化碳水化合物结合模块(CBM)组成。目前尚不清楚CBM的特异性或催化模块的拓扑结构是否是这些酶针对植物细胞壁的特异性的主要驱动力。在这里,我们评估了CBM特异性与其增强GH5和GH26甘露聚糖酶和CE2酯酶对完整植物细胞壁的活性的能力之间的关系。数据表明,纤维素和甘露聚糖结合的煤层气分别对从烟草和小球藻细胞壁中去除甘露聚糖的影响最大。尽管GH5甘露聚糖酶的作用与烟草细胞壁中甘露聚糖的情况无关,但GH26酶无法接近大部分多糖。但是,添加到结合​​纤维素的CBM上的GH26甘露聚糖酶完全可以进入顽固型甘露聚糖。尽管CE2酯酶在体外对乙酰化底物表现出相似的特异性,但在Physcomitrella中,只有CjCE2C对乙酰化甘露聚糖具有活性。将甘露聚糖结合CBM27结合到CjCE2C上增强了其对小肠胃小肠壁的活性,而木聚糖结合的CBM降低了酯酶使烟草壁中的木聚糖脱乙酰化的能力。这项工作提供了由植物细胞壁降解微生物表达的复杂水解酶阵列的生物学意义的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号