首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length: Application to Human PIEZO1-Channels
【2h】

Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length: Application to Human PIEZO1-Channels

机译:通过最小描述长度对离子通道记录进行无监督的理想化:应用于人类PIEZO1通道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Researchers can investigate the mechanistic and molecular basis of many physiological phenomena in cells by analyzing the fundamental properties of single ion channels. These analyses entail recording single channel currents and measuring current amplitudes and transition rates between conductance states. Since most electrophysiological recordings contain noise, the data analysis can proceed by idealizing the recordings to isolate the true currents from the noise. This de-noising can be accomplished with threshold crossing algorithms and Hidden Markov Models, but such procedures generally depend on inputs and supervision by the user, thus requiring some prior knowledge of underlying processes. Channels with unknown gating and/or functional sub-states and the presence in the recording of currents from uncorrelated background channels present substantial challenges to such analyses. Here we describe and characterize an idealization algorithm based on Rissanen's Minimum Description Length (MDL) Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics. Furthermore, we demonstrate that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances.
机译:研究人员可以通过分析单个离子通道的基本特性来研究细胞中许多生理现象的机理和分子基础。这些分析需要记录单通道电流并测量电流幅度和电导状态之间的转换率。由于大多数电生理记录都包含噪声,因此可以通过对记录进行理想化以将真实电流与噪声隔离来进行数据分析。这种降噪可以通过阈值穿越算法和隐马尔可夫模型来完成,但是这种过程通常取决于用户的输入和监督,因此需要对基础过程有所了解。具有未知门控和/或功能子状态的通道以及来自不相关背景通道的电流记录中的存在,对此类分析提出了重大挑战。在这里,我们描述和描述基于Rissanen的最小描述长度(MDL)原理的理想化算法。该方法使用最少的假设并理想化离子通道记录,而无需详细的用户输入或有关通道电导和动力学的先验假设。此外,我们证明了电导步骤的相关性分析可以解决单个离子通道在受多个通道信号污染的记录中的特性。我们首先在模拟数据上验证了我们的方法,该模拟数据定义了一系列不同的信噪比水平,然后证明了即使在高噪声条件下,我们的算法也可以从具有多个通道的录音中恢复通道电流及其子状态。然后,我们在来自人PIEZO1通道的真实实验数据上测试了MDL算法,发现我们的方法揭示了具有交替电导的亚状态的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号