首页> 美国卫生研究院文献>Frontiers in Cellular Neuroscience >Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth
【2h】

Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth

机译:通过分子电动机驱动的微管束产生力;对神经元极化和生长的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury.
机译:在神经元过程中发现的高度交联的微管束在轴突和树突的起始,生长和成熟中起着核心作用。但是,仍然缺乏对它们的机械功能的定量理解。我们在这里开发了计算机模拟,以研究由分子马达交联并提供动力的一维MT束中的力产生动力学。根据马达类型(单极或双极),MT密度和长度,施加的负载以及马达的连通性,研究灯丝的运动及其施加的力。我们证明只有单极电机(例如kinesin-1)可以提供束扩张的驱动力,而双极电机(例如kinesin-5)则相反。由于必须在束中发生渗流过渡,因此束的力产生能力显示出与单极电机的比例密切相关。给出了束长度,力,MT长度和运动分数之间的比例定律。此外,我们研究了在不断涌入MT的情况下的增长动态。在短暂的平衡期之后,束随时间线性增长。在这种生长方式下,束以一个质量向前延伸,大多数细丝随着生长速度滑动。所示的生长速度取决于MT的向内通量,与负载成反比,并且与电动机的自由速度无关。这些发现为损伤后正常轴突生长和再生中MT细胞骨架的机械功能提供了重要的分子水平见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号