首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structural Basis for LMO2-Driven Recruitment of the SCL:E47bHLH Heterodimer to Hematopoietic-Specific Transcriptional Targets
【2h】

Structural Basis for LMO2-Driven Recruitment of the SCL:E47bHLH Heterodimer to Hematopoietic-Specific Transcriptional Targets

机译:LMO2驱动的SCL:E47bHLH异源二聚体向造血特异性转录靶的募集的结构基础。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMany, if not all, cellular processes are driven by multiprotein complexes. In the nucleus, control of gene expression is achieved through assembly of such molecular machines on genomic loci in a highly controlled manner. These complexes contain combinations of regulators such as transcription factors (TFs), cofactors, and chromatin-remodeling proteins () that assemble in a modular manner for rapid adaptation of gene expression programs. Although at the heart of transcription, little is known about the molecular mechanisms driving formation of multiprotein complexes and their interaction with DNA, the role of individual components in this process, and the relationship between TFs and chromatin-remodeling proteins. To address some of these questions, we have analyzed the associations between two evolutionarily conserved families of transcriptional regulators, namely basic-helix-loop-helix (bHLH) and LIM domain-containing proteins () at structural, functional, and biochemical levels.The hematopoietic system offers a well-characterized model to study bHLH/LIM protein interactions, such as those engaged by the tissue-specific class II bHLH TF SCL/TAL1 (hereafter called SCL) and the non-DNA-binding LIM-only protein LMO2. SCL and LMO2 were initially discovered through chromosomal translocations involved in T cell acute lymphoblastic leukemia (T-ALL) (). Indeed, their ectopic expression in T cell precursors occurs in up to 60% of childhood T-ALL cases of which 80% coexpresses SCL and LMO2 (or LMO1) (). In normal hematopoiesis, SCL and LMO2 are absolutely required for hematopoietic specification and terminal differentiation of specific hematopoietic lineages ().SCL forms obligate heterodimers through its HLH domain with ubiquitously expressed class I bHLH E proteins (such as the E2A gene products, E47 and E12) (). The SCL:E47 heterodimer binds through its basic regions to an E box DNA recognition sequence (CANNTG), each monomer recognizing one-half of the E box (). The SCL:E47 heterodimer then nucleates a “core” multiprotein complex by binding to the adaptor protein LMO2 and its interacting partner LDB1 (LIM-binding domain 1) ().The SCL core complex (SCL:E47:LMO2:LDB1) acquires further specificity through recruitment of additional protein partners. In erythroid cells, LMO2 recruits hematopoietic-specific TF GATA1, creating the so-called “pentameric” complex that binds a bipartite E box-GATA DNA sequence (). The complex regulates expression of important hematopoietic-specific genes () upon recruitment of various combinations of cofactors and chromatin remodelers, such as ETO2, mSin3A, P300, PCAF, and LSD1 ().In T-ALL, the prevailing model suggests that ectopically expressed SCL and LMO2 synergize to prevent the activity of E protein homodimers, essential for normal progression of T cell differentiation. Specifically, through a sequestration mechanism that is yet to be characterized at the molecular level, E proteins are locked into ectopic SCL core complexes that act by repressing apoptotic pathways and preventing the normal T cell transcriptional program ().Interestingly, for its functions in hematopoietic specification and leukemogenesis, SCL does not rely on direct DNA-binding activities (), suggesting that it may work off DNA or be tethered to DNA through other DNA-bound TFs. Additionally, we previously showed that one-fifth of SCL’s genomic targets in erythroid cells can recruit the factor independently of its DNA-binding activity (), suggesting a critical network of additional protein:protein and protein:DNA interactions for the nucleation of such complexes.Despite a wealth of studies defining the SCL core complex as a key transcriptional regulator in normal and malignant hematopoiesis, its mechanism of action remains undefined at a molecular level. Specifically, the molecular interactions governing protein:protein and protein:DNA associations are not understood. Moreover, the molecular details of the E protein sequestration model, which confers to ectopically expressed SCL and LMO2 their oncogenic properties, are unclear. Although functional, biochemical, and biophysical studies have suggested potential pathways to complex assembly (href="#bib28" rid="bib28 bib44 bib46 bib56" class=" bibr popnode">Lécuyer et al., 2007; Ryan et al., 2008; Schlaeger et al., 2004; Wadman et al., 1997), complete dissection of the molecular rules driving complex formation has been hindered by the lack of a full structural characterization. No structure exists for SCL, and whereas other bHLH proteins and LIM proteins, including E47 (href="#bib12" rid="bib12" class=" bibr popnode">Ellenberger et al., 1994) and LMO2 (href="#bib14" rid="bib14" class=" bibr popnode">El Omari et al., 2011), have been structurally characterized, no molecular account exists of their association. The mechanistic role of each complex component and their contribution to cofactor recruitment also remain unclear.Here, we report the structure of the SCL core complex (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA. This structure, which details a bHLH:LIM protein association, provides an atomic description of the interactions driving the association of the SCL:E47 heterodimer and its interface with DNA in the presence and in absence of LMO2. Analysis of the structure uncovers unexpected roles for SCL, E47, and LMO2. Functional and biochemical analyses further reveal complex synergies between components of the complex, their cofactors, and DNA targets. Together, these results deepen our understanding of how higher-order, hematopoietic-specific complexes form and how tissue-specific gene expression programs might be regulated. Importantly, the structure, which delivers insights into the oncogenic properties of the complex, will drive the design of small molecules for targeted inhibition of oncogenic processes in T-ALL.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介许多(如果不是全部的话)细胞过程是由多蛋白复合物驱动的。在细胞核中,通过以高度受控的方式在基因组位点上组装此类分子机器来实现对基因表达的控制。这些复合物包含调节剂的组合,例如转录因子(TFs),辅因子和染色质重塑蛋白(),它们以模块方式组装,可快速适应基因表达程序。尽管是转录的核心,但对驱动多蛋白复合物形成及其与DNA相互作用的分子机制,单个成分在此过程中的作用以及TF与染色质重塑蛋白之间的关系知之甚少。为了解决其中的一些问题,我们在结构,功能和生化水平上分析了两个进化保守的转录调节子家族之间的联系,即碱性螺旋环-螺旋(bHLH)和含LIM结构域的蛋白质()。造血系统提供了一个特征明确的模型来研究bHLH / LIM蛋白质相互作用,例如组织特异性II类bHLH TF SCL / TAL1(以下称为SCL)和非DNA结合的仅LIM蛋白质LMO2参与的相互作用。 SCL和LMO2最初是通过涉及T细胞急性淋巴细胞白血病(T-ALL)的染色体易位发现的()。确实,它们在T细胞前体中的异位表达发生在多达60%的儿童T-ALL病例中,其中80%共表达SCL和LMO2(或LMO1)()。在正常的造血过程中,SCL和LMO2是造血规范和特定造血谱系终末分化的绝对必需().SCL通过其HLH域与遍在表达的I类bHLH E蛋白(例如E2A基因产物E47和E12)形成专性异二聚体)()。 SCL:E47异二聚体通过其基本区域与E盒DNA识别序列(CANNTG)结合,每个单体识别E盒的一半()。然后,SCL:E47异二聚体通过与衔接蛋白LMO2及其相互作用的伴侣LDB1(LIM结合域1)()结合,使“核心”多蛋白复合物成核。SCL核心复合物(SCL:E47:LMO2:LDB1)进一步获得通过招募其他蛋白质伴侣获得特异性。在红系细胞中,LMO2募集造血特异性的TF GATA1,从而创建了一种结合了两部分E盒GATA DNA序列的所谓的``五聚体''复合物。该复合物在募集辅因子和染色质重塑剂的各种组合(例如ETO2,mSin3A,P300,PCAF和LSD1)后调节重要的造血特异性基因的表达。在T-ALL中,流行的模型表明异位表达SCL和LMO2协同作用以阻止E蛋白同源二聚体的活性,这对于T细胞分化的正常进展至关重要。具体来说,通过尚未在分子水平表征的螯合机制,E蛋白被锁定在异位SCL核心复合物中,该复合物通过抑制凋亡途径并阻止正常的T细胞转录程序发挥作用(有趣的是,其在造血功能方面的作用)。在SCL规范和白血病发生方面,SCL不依赖于直接的DNA结合活性(),这表明它可能作用于DNA或通过其他与DNA结合的TF连接到DNA。此外,我们先前显示,类红细胞中SCL的基因组靶标的五分之一可以募集该因子,而不受其DNA结合活性的影响(),这表明这种复合物成核的关键蛋白质:蛋白质和蛋白质:DNA相互作用的关键网络尽管有大量研究将SCL核心复合体定义为正常和恶性造血系统中的关键转录调节因子,但其作用机理在分子水平上仍不确定。具体来说,尚不清楚控制蛋白质:蛋白质和蛋白质:DNA关联的分子相互作用。此外,尚不清楚E蛋白质螯合模型的分子细节,这些细节赋予了异位表达的SCL和LMO2致癌特性。尽管功能,生化和生物物理研究表明了复杂组装的潜在途径(href="#bib28" rid="bib28 bib44 bib46 bib56" class=" bibr popnode">Lécuyer等,2007; Ryan等。 ,2008; Schlaeger等,2004; Wadman等,1997 ),由于缺乏完整的结构特征,阻碍了分子规则的完全分解,从而驱使复合物形成。 SCL没有结构,而其他bHLH蛋白和LIM蛋白,包括E47(href="#bib12" rid="bib12" class=" bibr popnode"> Ellenberger等,1994 )和LMO2(href =“#bib14” rid =“ bib14 “ class =“ bibr popnode”> El Omari等人,2011 )已进行了结构表征,没有分子说明它们之间的联系。尚不清楚每个复合物组件的机械作用及其对辅因子募集的贡献。在此,我们报道了SCL核心复合物(SCL:E47)bHLH:LMO2:LDB1LID与DNA结合的结构。该结构详细描述了bHLH:LIM蛋白的缔合关系,提供了在存在和不存在LMO2的情况下驱动SCL:E47异二聚体及其与DNA界面缔合的相互作用的原子描述。结构分析揭示了SCL,E47和LMO2的意外作用。功能和生化分析进一步揭示了复合物组分,其辅因子和DNA靶标之间的复合物协同作用。总之,这些结果加深了我们对如何形成更高阶的造血特异性复合物以及如何调控组织特异性基因表达程序的理解。重要的是,该结构可提供对复合物致癌特性的深入了解,该结构将推动小分子设计,以靶向抑制T-ALL中的致癌过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号