首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Single-Molecule Fluorescence Reveals the Unwinding Stepping Mechanism of Replicative Helicase
【2h】

Single-Molecule Fluorescence Reveals the Unwinding Stepping Mechanism of Replicative Helicase

机译:单分子荧光揭示了解旋酶解旋的步进机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDNA helicases are motor enzymes that convert the chemical energy of nucleotide triphosphate hydrolysis into mechanical energy for translocation on single-stranded DNA (ssDNA) and unwinding of double-stranded DNA (dsDNA) (, ). These enzymes encounter DNA sequences of different stabilities, and studying the effect of base pair stability can provide insights into the unwinding mechanisms (, ). Previous studies have shown that the unwinding rates of T7 helicase, T4 helicase, and hepatitis virus C NS3 helicase depend on the stability of nucleic acid base pairs (, , , ).T7 helicase (gp4A′ protein) has served as a good model system for hexameric helicases (, ). It assembles into a ring-shaped hexamer in the presence of deoxythymidine triphosphate (dTTP) and ssDNA (, ), and translocates on ssDNA in the 5′ to 3′ direction. It unwinds dsDNA using a strand-exclusion mechanism whereby it binds and moves along one strand of the dsDNA in the 5′ to 3′ direction while excluding the complementary strand from its central channel (, , href="#bib27" rid="bib27" class=" bibr popnode">Jezewska et al., 1998, href="#bib30" rid="bib30" class=" bibr popnode">Kaplan and O’Donnell, 2002).Using ensemble single-turnover kinetic analysis, href="#bib26" rid="bib26" class=" bibr popnode">Jeong et al. (2004) estimated the kinetic step size of unwinding by T7 helicase to be ∼10 bp. As defined, the kinetic step size provides an estimate of how often a recurrent rate-limiting step takes place during processive unwinding. However, the kinetic step size estimated from ensemble measurements can be inflated if there exists significant heterogeneity in the reaction rate among individual molecules (href="#bib49" rid="bib49" class=" bibr popnode">Park et al., 2010). In addition, the crystal structures of hexameric helicases published thus far have not given detailed information on the unwinding mechanisms because either the nucleic acid substrates were not included in the structures (href="#bib3" rid="bib3" class=" bibr popnode">Bailey et al., 2007, href="#bib19" rid="bib19" class=" bibr popnode">Gai et al., 2004, href="#bib36" rid="bib36" class=" bibr popnode">Li et al., 2003, href="#bib60" rid="bib60" class=" bibr popnode">Singleton et al., 2000, href="#bib65" rid="bib65" class=" bibr popnode">Wang et al., 2008) or only the single-stranded substrates were cocrystallized (href="#bib17" rid="bib17" class=" bibr popnode">Enemark and Joshua-Tor, 2006, href="#bib25" rid="bib25" class=" bibr popnode">Itsathitphaisarn et al., 2012, href="#bib63" rid="bib63" class=" bibr popnode">Thomsen and Berger, 2009). Although single-molecule techniques have provided detailed insights into the mechanisms of various helicases (href="#bib6" rid="bib6" class=" bibr popnode">Bianco et al., 2001, href="#bib8" rid="bib8" class=" bibr popnode">Cheng et al., 2007, href="#bib9" rid="bib9" class=" bibr popnode">Cheng et al., 2011, href="#bib11" rid="bib11" class=" bibr popnode">Dessinges et al., 2004, href="#bib12" rid="bib12" class=" bibr popnode">Dohoney and Gelles, 2001, href="#bib18" rid="bib18" class=" bibr popnode">Fili et al., 2010, href="#bib21" rid="bib21" class=" bibr popnode">Ha et al., 2002, href="#bib24" rid="bib24" class=" bibr popnode">Honda et al., 2009, href="#bib28" rid="bib28" class=" bibr popnode">Johnson et al., 2007, href="#bib31" rid="bib31" class=" bibr popnode">Karunatilaka et al., 2010, href="#bib33" rid="bib33" class=" bibr popnode">Klaue et al., 2013, href="#bib34" rid="bib34" class=" bibr popnode">Lee et al., 2006, href="#bib38" rid="bib38" class=" bibr popnode">Lionnet et al., 2007, href="#bib41" rid="bib41" class=" bibr popnode">Manosas et al., 2009, href="#bib44" rid="bib44" class=" bibr popnode">Myong et al., 2005, href="#bib45" rid="bib45" class=" bibr popnode">Myong et al., 2007, href="#bib46" rid="bib46" class=" bibr popnode">Myong et al., 2009, href="#bib49" rid="bib49" class=" bibr popnode">Park et al., 2010, href="#bib53" rid="bib53" class=" bibr popnode">Perkins et al., 2004, href="#bib54" rid="bib54" class=" bibr popnode">Qi et al., 2013, href="#bib61" rid="bib61" class=" bibr popnode">Spies et al., 2003, href="#bib62" rid="bib62" class=" bibr popnode">Sun et al., 2011), unwinding steps have not been detected for any hexameric helicase. In this report, we used single-molecule fluorescence resonance energy transfer (smFRET) (href="#bib20" rid="bib20" class=" bibr popnode">Ha et al., 1996) to measure real-time DNA unwinding by individual T7 helicase molecules. Taking advantage of the sequence-dependent unwinding rate, we used a designed DNA substrate to find a relation between FRET efficiency and the number of base pairs unwound. From substrates with a high guanine-cytosine (GC) content, we could detect the individual steps of DNA unwinding and analyze their kinetics.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 DNA解旋酶是将三磷酸核苷酸水解的化学能转化为机械能的运动酶。单链DNA(ssDNA)上的易位和双链DNA(dsDNA)的展开(,)。这些酶遇到具有不同稳定性的DNA序列,研究碱基对稳定性的影响可以提供解开机制的信息。先前的研究表明,T7解旋酶,T4解旋酶和肝炎病毒C NS3解旋酶的解开速率取决于核酸碱基对(````)的稳定性.T7解旋酶(gp4A'蛋白)已作为一个良好的模型系统用于六聚解旋酶(,)。它在脱氧胸苷三磷酸(dTTP)和ssDNA(,)存在下组装成环形六聚体,并在5'至3'方向上易位。它使用链排除机制解链dsDNA,从而结合并沿着dsDNA的一条链沿5'到3'方向移动,同时从其中心通道排除互补链(,,href =“#bib27” rid = “ bib27” class =“ bibr popnode”> Jezewska等人,1998 ,href="#bib30" rid="bib30" class=" bibr popnode"> Kaplan和O'Donnell,2002年)。 a href =“#bib26” rid =“ bib26” class =“ bibr popnode”> Jeong等。 (2004 )估计,T7解旋酶解链的动力学步长约为10 bp。如所定义的,动力学步长大小提供了在过程性退绕过程中多久进行一次限速步骤的估计。但是,如果各个分子之间的反应速率存在显着的异质性,则可以夸大从整体测量中得出的动力学步长(href="#bib49" rid="bib49" class=" bibr popnode"> Park等。 ,2010 )。此外,到目前为止发布的六聚解旋酶的晶体结构尚未提供解链机理的详细信息,因为结构中未包含任何核酸底物(href =“#bib3” rid =“ bib3” class =“ bibr popnode“> Bailey等人,2007 ,href="#bib19" rid="bib19" class=" bibr popnode"> Gai等人,2004 ,href = “#bib36” rid =“ bib36” class =“ bibr popnode”> Li等,2003 ,href="#bib60" rid="bib60" class=" bibr popnode">辛格尔顿等,2000 ,href="#bib65" rid="bib65" class=" bibr popnode"> Wang等人,2008 )或仅将单链基质共结晶(< a href =“#bib17” rid =“ bib17” class =“ bibr popnode”> Enemark and Joshua-Tor,2006 ,href =“#bib25” rid =“ bib25” class =“ bibr popnode” > Itsathitphaisarn等,2012 ,href="#bib63" rid="bib63" class=" bibr popnode"> Thomsen and Berger,2009 。尽管单分子技术已对各种解旋酶的机理提供了详细的见解(href="#bib6" rid="bib6" class=" bibr popnode"> Bianco等,2001 ,href =“#bib8” rid =“ bib8” class =“ bibr popnode”> Cheng et al。,2007 ,href="#bib9" rid="bib9" class=" bibr popnode"> Cheng等等人,2011 ,href="#bib11" rid="bib11" class=" bibr popnode">迪辛斯等人,2004 ,href =“#bib12” rid = “ bib12” class =“ bibr popnode”> Dohoney and Gelles,2001 ,href="#bib18" rid="bib18" class=" bibr popnode"> Fili等人,2010 ,href="#bib21" rid="bib21" class=" bibr popnode">哈等人,2002 ,href =“#bib24” rid =“ bib24” class =“ bibr popnode “> Honda等人,2009 ,href="#bib28" rid="bib28" class=" bibr popnode"> Johnson等人,2007 ,href =”# bib31“ rid =” bib31“ class =” bibr popnode“> Karunatilaka等,2010 ,href="#bib33" rid="bib33" class=" bibr popnode"> Klaue等, 2013 ,href="#bib34" rid="bib34" class=" bibr popnode">李et al。,2006 ,href="#bib38" rid="bib38" class=" bibr popnode"> Lionnet et al。,2007 ,href =“#bib41” rid =“ bib41” class =“ bibr popnode”> Manosas等,2009 ,href="#bib44" rid="bib44" class=" bibr popnode"> Myong等,2005 ,href="#bib45" rid="bib45" class=" bibr popnode"> Myong等,2007 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode“> Myong等,2009 ,href="#bib49" rid="bib49" class=" bibr popnode"> Park等,2010 ,href = “#bib53” rid =“ bib53” class =“ bibr popnode”>珀金斯等人,2004 ,href="#bib54" rid="bib54" class=" bibr popnode">齐等人。,2013 ,href="#bib61" rid="bib61" class=" bibr popnode">间谍等人,2003 ,href =“#bib62” rid =“ bib62“ class =” bibr popnode“> Sun等人,2011 ),未检测到任何六聚解旋酶的退绕步骤。在本报告中,我们使用单分子荧光共振能量转移(smFRET)(href="#bib20" rid="bib20" class=" bibr popnode"> Ha等,1996 )进行测量通过单个T7解旋酶分子实时解链DNA。利用序列依赖的解链速率,我们使用设计的DNA底物来发​​现FRET效率与解链碱基对数之间的关系。从鸟嘌呤-胞嘧啶(GC)含量高的底物,我们可以检测DNA展开的各个步骤并分析其动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号