class='head no_bottom_margin' id='sec1title'>Int'/> Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation
【2h】

Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation

机译:Jarid2甲基化通过PRC2复合物调节细胞分化过程中的H3K27me3沉积。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAppropriate gene expression patterns in distinct cell lineages need to be set during embryogenesis and perpetuated during the lifespan of an organism. Polycomb group (PcG) proteins are known to take part in the maintenance of gene repression mostly through chromatin regulation (). Polycomb Repressive Complex 2 (PRC2), a key component of the Polycomb machinery, is composed of four core components: the catalytic subunit Ezh1/2, Suz12, Eed, and RbAp46/48. PRC2 is responsible for the di- and tri-methylation of histone H3 at lysine 27 (H3K27me2/3), a histone mark that correlates with silent or poorly transcribed genomic regions (). In addition to the core components of PRC2, several cofactors were shown to interact with this complex and to modulate both its binding to chromatin and its enzymatic activity ().The molecular mechanisms responsible for PRC2 recruitment to chromatin are still unclear. Two models have been proposed (). A first “instructive” model proposes that PRC2 recruitment relies either on transcription factors (TFs) or on long non-coding RNAs (lncRNAs). Several studies support this hypothesis, with the examples of the lncRNAs Xist (), HOTAIR (), or Kcnq1ot1 () and of TFs such as YY1 () or Snail (). However, the nature and the relevance of the interactions between PRC2 and lncRNAs or TFs are not yet clear ().A second “responsive” model relies on the observation that chromatin structure modulates PRC2 recruitment and functions. Several studies have shown that PRC2 activity is regulated by marks already present on chromatin. For example, the H3K4me3 and H3K36me3 marks associated to active transcription are reported to prevent the methylation of H3K27 by PRC2 when present on the same histone tail (). In contrast, PRC2 enzymatic activity is stimulated by H3K27me3 via specific interactions between the methylated lysine 27 and the aromatic cage of Eed () and by H2A ubiquitination (H2AUb) through a less defined molecular mechanism ().Other chromatin features have also been shown to impact PRC2/chromatin interaction such as DNA methylation () and nucleosome density (href="#bib42" rid="bib42 bib50" class=" bibr popnode">Simon and Kingston, 2013; Yuan et al., 2012). In addition, PRC2 cofactors actively contribute to “sensing” chromatin structure. For instance, the PCL proteins were recently reported to recognize H3K36me3 (href="#bib4" rid="bib4 bib6 bib30 bib36" class=" bibr popnode">Brien et al., 2012; Cai et al., 2013; Musselman et al., 2012; Qin et al., 2013) and both the cofactors Aebp2 and Jarid2 have putative DNA binding domains (href="#bib17" rid="bib17 bib18" class=" bibr popnode">Kim et al., 2004, 2009). Of note, transcription can modulate PRC2 function not only through its impact on chromatin but also through PRC2 interaction with nascent RNA transcripts (href="#bib9" rid="bib9 bib14 bib16" class=" bibr popnode">Davidovich et al., 2013; Kaneko et al., 2013; Kanhere et al., 2010).Jarid2, a member of the Jumonji family of proteins (href="#bib20" rid="bib20" class=" bibr popnode">Klose et al., 2006), is a developmental regulator, which is necessary for proper mouse development and embryonic stem cell (ESC) differentiation (href="#bib22" rid="bib22" class=" bibr popnode">Landeira and Fisher, 2011). However, unlike other members of the Jumonji family of proteins, Jarid2 has no histone demethylase activity. Previous studies showed that it interacts with PRC2 complex (href="#bib23" rid="bib23 bib25 bib33 bib34 bib41" class=" bibr popnode">Landeira et al., 2010; Li et al., 2010; Pasini et al., 2010; Peng et al., 2009; Shen et al., 2009). PRC2 and Jarid2 mostly co-localize at chromatin in ESC (href="#bib23" rid="bib23 bib25 bib33 bib34 bib41" class=" bibr popnode">Landeira et al., 2010; Li et al., 2010; Pasini et al., 2010; Peng et al., 2009; Shen et al., 2009) and Jarid2 depletion reduces PRC2 enrichment at chromatin, leading to the hypothesis that Jarid2 may act to recruit PRC2 (href="#bib33" rid="bib33" class=" bibr popnode">Pasini et al., 2010). In support of this, we recently demonstrated that Jarid2 has a nucleosome-binding domain that stabilizes PRC2 binding to chromatin (href="#bib43" rid="bib43" class=" bibr popnode">Son et al., 2013), interaction that could be modulated by lncRNAs (href="#bib15" rid="bib15" class=" bibr popnode">Kaneko et al., 2014). Notably, reduced occupancy of PRC2 at chromatin in the absence of Jarid2 does not translate into substantial decrease of H3K27me3 enrichment, suggesting that Jarid2 could constrain PRC2 enzymatic activity. However, several studies have now shown that Jarid2 positively regulates PRC2 activity (href="#bib25" rid="bib25 bib43 bib51" class=" bibr popnode">Li et al., 2010; Son et al., 2013; Zhang et al., 2011). Overall, although there is a consensus on the importance of Jarid2 as regulator of PRC2, how exactly it modulates PRC2 and H3K27me3 deposition is far from clear.In this study, we investigate the interplay between Jarid2 and PRC2 and explore how this cofactor regulates H3K27me3 deposition and PRC2 function. We show that Jarid2 is a substrate for PRC2 and we characterize Jarid2 methylation in relation to PRC2 activity by a combination of biochemical, genomic, and in vivo approaches. Our study reveals that Jarid2 methylation participates in a unique regulatory mechanism controlling PRC2 catalytic activity and is required for the proper deposition of H3K27me3 during cell differentiation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介需要在胚胎发生期间设置不同细胞谱系中适当的基因表达模式,并在胚胎形成过程中使其永久存在生物体的寿命。已知多梳基团(PcG)蛋白主要通过染色质调节来参与基因阻遏的维持。 Polycomb Repressive Complex 2(PRC2)是Polycomb机械的关键组件,它由四个核心组件组成:催化亚基Ezh1 / 2,Suz12,Eed和RbAp46 / 48。 PRC2负责组氨酸H3在赖氨酸27(H3K27me2 / 3)处的二甲基化和三甲基化,组氨酸标记与沉默或转录不佳的基因组区域相关()。除了PRC2的核心成分外,还显示了一些辅因子与该复合物相互作用,并调节其与染色质的结合及其酶活性().PRC2募集到染色质的分子机制仍不清楚。已经提出了两种模型。第一个“指导性”模型建议PRC2募集依赖于转录因子(TFs)或长的非编码RNA(lncRNAs)。一些研究以lncRNA Xist(),HOTAIR()或Kcnq1ot1()以及TFs如YY1()或Snail()的例子来支持这一假设。但是,PRC2与lncRNA或TF之间相互作用的性质和相关性尚不清楚()。第二个“响应”模型依赖于染色质结构调节PRC2募集和功能的观察。多项研究表明,PRC2活性受染色质上已经存在的标记调节。例如,据报道与活性转录相关的H3K4me3和H3K36me3标记可防止在同一组蛋白尾巴上出现PRC2引起的H3K27甲基化。相比之下,H3K27me3通过甲基化的赖氨酸27与Eed的芳香笼之间的特异性相互作用来刺激PRC2的酶活性(),并且通过分子机制不明确的H2A泛素化(H2AUb)来刺激PRC2的酶活性。影响PRC2 /染色质相互作用,例如DNA甲基化()和核小体密度(href="#bib42" rid="bib42 bib50" class=" bibr popnode"> Simon和Kingston,2013年; Yuan等人,2012年)。此外,PRC2辅助因子还积极参与了“传感”染色质结构。例如,最近据报道,PCL蛋白可识别H3K36me3(href="#bib4" rid="bib4 bib6 bib30 bib36" class=" bibr popnode"> Brien等,2012; Cai等,2013; Musselman等人,2012; Qin等人,2013 )以及辅助因子Aebp2和Jarid2都具有推定的DNA结合域(href =“#bib17” rid =“ bib17 bib18” class =“ bibr popnode “> Kim等人,2004,2009 )。值得注意的是,转录不仅可以通过其对染色质的影响来调节PRC2的功能,而且还可以通过PRC2与新生RNA转录物的相互作用来调节(href="#bib9" rid="bib9 bib14 bib16" class=" bibr popnode"> Davidovich等人,2013; Kaneko等,2013; Kanhere等,2010 )。Jarid2,Jumonji蛋白质家族的成员(href =“#bib20” rid =“ bib20” class =“ bibr popnode“> Klose等人,2006 )是一种发育调节剂,对于正常的小鼠发育和胚胎干细胞(ESC)分化(href =”#bib22“ rid =” bib22“ class =“ bibr popnode”> Landeira和Fisher,2011 )。但是,与Jumonji蛋白质家族的其他成员不同,Jarid2没有组蛋白脱甲基酶活性。先前的研究表明它与PRC2复合物相互作用(href="#bib23" rid="bib23 bib25 bib33 bib34 bib41" class=" bibr popnode"> Landeira等,2010; Li等,2010; Pasini等等人,2010年; Peng等人,2009年; Shen等人,2009 )。 PRC2和Jarid2大多共定位在ESC的染色质上(href="#bib23" rid="bib23 bib25 bib33 bib34 bib34 bib41" class=" bibr popnode"> Landeira et al。,2010; Li et al。,2010; Pasini等人,2010; Peng等人,2009; Shen等人,2009 )和Jarid2耗竭减少了染色质上的PRC2富集,从而导致了Jarid2可能起招募PRC2的假设(href = “#bib33” rid =“ bib33” class =“ bibr popnode”> Pasini等人,2010 )。为了支持这一点,我们最近证明Jarid2具有一个核小体结合结构域,该结构域可稳定PRC2与染色质的结合(href="#bib43" rid="bib43" class=" bibr popnode"> Son等人,2013 < / a>),可以由lncRNA调节的相互作用(href="#bib15" rid="bib15" class=" bibr popnode"> Kaneko等人,2014 )。值得注意的是,在不存在Jarid2的情况下降低了染色质上PRC2的占有率并不能转化为H3K27me3富集的实质性降低,这表明Jarid2可以限制PRC2的酶促活性。但是,现在有几项研究表明Jarid2正调控PRC2的活性(href="#bib25" rid="bib25 bib43 bib51" class=" bibr popnode"> Li等,2010; Son等,2013; Li等。 Zhang et al。,2011 )。总的来说,尽管人们对Jarid2作为PRC2的调节剂的重要性达成了共识,但如何精确调节PRC2和H3K27me3的沉积尚不清楚。在这项研究中,我们调查了Jarid2和PRC2之间的相互作用,并探讨了该辅助因子如何调节H3K27me3的沉积。和PRC2功能。我们显示Jarid2是PRC2的底物,并且通过生化,基因组和体内方法相结合来表征Jarid2甲基化与PRC2活性的关系。我们的研究表明Jarid2甲基化参与了控制PRC2催化活性的独特调节机制,并且在细胞分化过程中H3K27me3的正确沉积是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号