首页> 美国卫生研究院文献>Elsevier Sponsored Documents >NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells
【2h】

NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells

机译:NRP1调节CDC42激活以促进内皮尖细胞中的丝状伪足形成。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDeveloping organs, ischemic tissues, and growing tumors produce the vascular endothelial growth factor VEGF-A to signal to its receptors on the endothelial cells (ECs) that line all blood vessels, and the resulting angiogenic expansion of local vasculature ensures the delivery of oxygen and nutrients to sustain fundamental metabolic processes (). VEGF-A signaling induces both the expansion of the EC pool by proliferation and the migration of ECs away from the existing plexus, whereby newly formed vessel sprouts are led by specialized tip cells that subsequently fuse to enable the formation of new vascular circuits (). The highly polarized endothelial tip cells can be distinguished from neighboring stalk cells by clusters of numerous long filopodia that are thought to detect microenvironmental cues for directional migration (). Filopodia are highly dynamic cellular protrusions that contain parallel bundles of filamentous actin (F-actin) and can extend from lamellipodia (). In addition to sensing growth factors, filopodia can adhere to the extracellular matrix (ECM) and form focal contacts that link the cytoskeleton to the ECM to promote forward movement.The main regulators of filopodia formation are members of the RHO-GTPase family, in particular CDC42, which is activated by VEGF-A signaling in cultured ECs (). Agreeing with a role for CDC42 in endothelial actin dynamics, both general and endothelial-specific CDC42 deletions disrupt blood vessel formation at the stage of vasculogenesis during mouse development (). However, the resulting early embryonic lethality of these mutants has precluded investigations into the role of CDC42 in filopodia formation, tip cell function, and sprouting angiogenesis in vivo. Moreover, it is not known if VEGF-A and/or ECM cues are important for CDC42 regulation during vessel sprouting.Neuropilin 1 (NRP1) is a non-tyrosine kinase transmembrane protein that regulates vascular development through dual roles in endothelial VEGF-A and ECM signaling (). Using the mouse embryo hindbrain as a model to study physiological angiogenesis, we recently demonstrated a cell-autonomous requirement for NRP1 in endothelial tip cells during angiogenic sprouting (). However, the specific cellular and molecular mechanisms that depend on NRP1 in tip cells have remained undefined. The prevailing model suggests that NRP1 acts as a VEGFR2 co-receptor downstream of VEGF-A signaling, which is chemotactic and induces the expression of essential tip cell genes. Supporting this idea, NRP1 can interact with VEGFR2 in ECs in vitro to potentiate VEGF-A signaling (e.g., ), and tip cell identity is promoted by VEGF-A signaling through VEGFR2 (). Alternatively, NRP1 may modulate signal transduction pathways that directly regulate tip cell behavior, such as cytoskeletal remodeling and filopodia extension. In agreement, NRP1 regulates filopodia orientation in hindbrain blood vessels () and enables actin remodeling for EC migration via ABL kinases (). However, it is not known how NRP1 might control filopodia formation and tip cell behavior.Here, we have combined the analysis of vascular development in the mouse hindbrain with functional studies in primary human ECs, zebrafish embryos, and mouse retina to demonstrate that NRP1 is dispensable for the genetic specification of tip cells but essential for CDC42 activation. Unexpectedly, NRP1 enabled CDC42-dependent actin remodeling and filopodia formation in endothelial tip cells independently of VEGF-A stimulation, and loss of CDC42 activation did not phenocopy the vascular defects of mice with impaired VEGF-A signaling through NRP1. Instead, NRP1-mediated CDC42 activation was induced by stimulation with ECM, and loss of this pathway caused defective vessel sprouting and branching similar to loss of the ECM-induced, NRP1-dependent activation of ABL kinases. In addition to demonstrating a physiological role for ECM-induced CDC42 activation in sprouting angiogenesis, our work has therefore identified a mechanism that ensures the integration of growth factor signals with ECM cues via NRP1 to enable tip cell function in sprouting angiogenesis.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介发育中的器官,缺血组织和生长中的肿瘤会产生血管内皮生长因子VEGF-A向其所有血管内衬的内皮细胞(EC)上的受体发出信号,由此产生的局部脉管系统血管生成扩展可确保氧气和营养物质的输送,从而维持基本的代谢过程()。 VEGF-A信号传导既能通过增殖诱导EC池的扩增,又能诱导EC从现有神经丛中迁移出来,从而由专门的尖端细胞引导新形成的脉管芽,随后融合以形成新的血管回路()。高度极化的内皮尖端细胞可以通过大量长丝状伪足的簇与邻近的茎细胞区分开来,这些簇可检测微环境线索的方向迁移()。丝足虫是高度动态的细胞突起,包含平行束的丝状肌动蛋白(F-肌动蛋白),可以从片状脂蛋白延伸。除感知生长因子外,丝状伪足还可以粘附到细胞外基质(ECM)上并形成将细胞骨架与ECM连接以促进向前运动的焦点接触。丝状伪足形成的主要调节剂是RHO-GTPase家族的成员,特别是CDC42,在培养的EC中被VEGF-A信号激活()。同意CDC42在内皮肌动蛋白动力学中的作用,一般和内皮特异性CDC42缺失都会在小鼠发育过程中的血管生成阶段破坏血管形成()。然而,这些突变体的早期胚胎致死率使人们无法研究CDC42在丝状伪足形成,尖端细胞功能和体内新生血管生成中的作用。此外,尚不清楚VEGF-A和/或ECM信号是否对血管萌发期间CDC42的调节很重要。神经氨酸蛋白1(NRP1)是一种非酪氨酸激酶跨膜蛋白,可通过内皮VEGF-A和/或ECM的双重作用调节血管发育。 ECM信令()。使用小鼠胚胎后脑作为模型来研究生理性血管生成,我们最近证明了在血管新生期间内皮尖端细胞对NRP1的细胞自主需求()。然而,依赖于末端细胞中NRP1的特定细胞和分子机制仍然不确定。流行的模型表明NRP1在VEGF-A信号传导下游充当VEGFR2共受体,这是趋化性的,并诱导必需的尖端细胞基因的表达。支持这一想法的是,NRP1可以在体外与EC中的VEGFR2相互作用,以增强VEGF-A信号传导(例如),并且通过VEGFR2的VEGF-A信号传导促进针尖细胞的特性()。或者,NRP1可以调节直接调节尖端细胞行为(如细胞骨架重塑和丝状伪足扩展)的信号转导途径。一致地,NRP1调节后脑血管中的丝状伪足方向(),并使肌动蛋白能够通过ABL激酶进行EC迁移而重塑。然而,目前尚不清楚NRP1如何控制丝状伪足的形成和尖端细胞的行为。在这里,我们将对小鼠后脑血管发育的分析与对主要人类EC,斑马鱼胚胎和小鼠视网膜的功能研究相结合,以证明NRP1是尖端细胞的遗传学指标可有可无,但CDC42激活必不可少。出乎意料的是,NRP1能够独立于VEGF-A刺激而使内皮尖端细胞中CDC42依赖的肌动蛋白重塑和丝状伪足形成,并且CDC42活化的丧失并未通过VEGF-A信号传导受损的小鼠通过血管内皮缺损进行表型复制。相反,通过ECM刺激诱导NRP1介导的CDC42激活,并且该途径的丧失导致有缺陷的血管发芽和分支,类似于ECM诱导的NBL1依赖性ABL激酶的丧失。因此,除了证明ECM诱导的CDC42激活在发芽血管生成中的生理作用外,我们的工作还确定了一种机制,该机制可确保生长因子信号通过NRP1与ECM提示整合,从而使尖端细胞在发芽血管生成中发挥功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号