首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors
【2h】

Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

机译:核蛋白与核转运受体之间超快速相互作用的可塑性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe plasticity of intrinsically disordered proteins (IDPs) is thought to be key to their highly diverse roles in the eukaryotic interactome and a variety of vital processes such as transcription, epigenetic regulation mechanisms, and transport through nuclear pore complexes (NPCs) (). The central channel of the NPC is filled with phenylalanine-glycine-rich proteins, called FG-nucleoporins (FG-Nups) that are intrinsically disordered (). FG-Nups build up an approximately 30-nm-thick permeability barrier through which large molecules (>40 kDa) can only be shuttled when bound to a nuclear transport receptor (NTR) with passage times as fast as 5 ms (). Due to the intrinsic dynamics of the FG-Nups, even state-of-the-art electron tomographic studies are not able to visualize them within the central NPC channel, despite their millimolar concentrations (). Consequently, the molecular structure of the permeability barrier and its general mode of action are widely debated (for a review see ).The key to understanding the observed nucleocytoplasmic transport phenomena resides in a description of the binding mode between FG-Nups and NTRs, for which a molecular analysis of the FG-Nup⋅NTR interaction is a prerequisite. Our current understanding of the molecular basis of FG-Nup⋅NTR interactions is in large part derived from X-ray crystallographic structures or molecular dynamics (MD) simulations of NTRs in the presence of short FG-peptides (up to ∼13 amino acids in length) (), as well as binding measurements with different NTRs or mutated NTR binding pockets (). Even for FG-Nups alone, only overall chain dimensions or long-range interactions within the Nups have so far been analyzed in solution (). Notably, even such fundamental binding characteristics as the equilibrium dissociation constant (Kd) between Nups and NTRs are still matter of discussion - estimates range from a few nM to several mM (). However, high Kd (low affinity, ∼mM) values are not easily compatible with high specificity of the transport process, while low Kd values (∼nM range) cannot easily explain high transport rates, since these might be expected to correlate with long residence times whereas NTRs must encounter many FG-Nups while crossing the thick barrier.Fast protein binding also typically requires proper orientation of the protein binding partners as well as conformational adaption of the IDP to bind to a folded protein. Those can occur prior to or during binding, as described by either of the two prevalent models for protein binding namely conformational selection and induced fit (). While such a conformational shift or fit can present the rate-limiting step of binding, fast binding is warranted in many biological processes. Several binding rate enhancing effects have been suggested or observed experimentally, such as maintenance of a degree of disorder (termed “fuzziness”; ) by conformational funneling (), a large capture radius of the flexible IDPs (), and the involvement of long-range electrostatic interactions to steer (attract) proteins together ().In this work, we characterize the conformational plasticity of Nups from human and yeast in the presence of structurally and functionally diverse NTRs. A focus was a PxFG-rich domain of the Nup153 (Nup153FGPxFG) as its size permitted a combination of nuclear magnetic resonance (NMR), single molecule Förster resonance energy transfer (smFRET), and molecular dynamics (MD) simulations to characterize local, residue specific, as well as long-range implications of Importinβ binding to Nup153FGPxFG conformation and dynamics. Additional Brownian dynamics (BD), fluorescence stopped-flow and single molecule transport experiments with functional NPCs in permeabilized cells, revealed the detailed kinetics of the complex formation between Nup and NTR. Using this molecular, integrative structural biology approach we propose a mechanism whereby Nups contribute low-affinity minimalistic binding motifs that act in concert to create a polyvalent complex. The global Nup structure and dynamics are largely unaffected by the interaction, thereby ensuring ultrafast binding and unbinding of individual motifs—a result that explains how nuclear transport can be fast yet specific, and that may have general implications for the mechanism of action of other IDPs that exhibit a multiplicity of binding motifs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介内在无序蛋白(IDP)的可塑性被认为是其高度多样化的关键在真核相互作用组和各种重要过程中的重要作用,例如转录,表观遗传调控机制以及通过核孔复合体(NPC)的运输()。 NPC的中央通道充满了内在无序的富含苯丙氨酸-甘氨酸的蛋白质,称为FG-核孔蛋白(FG-Nups)。 FG-Nups建立了一个约30 nm厚的渗透屏障,只有与核转运受体(NTR)结合时,大分子(> 40 kDa)才能通过,其通过时间最快可达5毫秒()。由于FG-Nup的内在动力学,即使最先进的电子断层扫描研究也无法在中央NPC通道中可视化它们,尽管其浓度为毫摩尔。因此,通透性屏障的分子结构及其一般作用方式受到广泛争议(有关综述,请参见)。了解观察到的核质转运现象的关键在于对FG-Nups和NTR之间的结合方式的描述。 FG-Nup·NTR相互作用的分子分析是前提条件。我们目前对FG-Nup·NTR相互作用的分子基础的理解大部分来自在短FG肽存在的情况下NTR的X射线晶体结构或分子动力学(MD)模拟。长度(),以及使用不同NTR或突变的NTR结合口袋的结合测量()。即使仅对于FG-Nup,到目前为止,在解决方案()中仅分析了Nups内部的整个链条尺寸或远距离相互作用。值得注意的是,即使诸如Nups和NTR之间的平衡解离常数(Kd)之类的基本结合特征仍在讨论中-估计范围从几nM到几mM()。然而,高Kd(低亲和力,〜mM)值不易与高转运过程相容,而低Kd值(〜nM范围)不能轻易解释高转运率,因为可能会与长居期相关快速的蛋白质结合通常还要求蛋白质结合配偶体的正确方向以及IDP的构象适应性以结合折叠的蛋白质。那些可以在结合之前或结合期间发生,如两种普遍的蛋白质结合模型即构象选择和诱导拟合所描述的那样。尽管这种构象变化或拟合可以成为结合的限速步骤,但在许多生物学过程中仍需要快速结合。已经提出或通过实验提出了几种结合率增强作用,例如通过构象漏斗维持一定程度的失调(称为“模糊性”;),柔性IDP的捕获半径大()以及长期参与其中。范围内的静电相互作用共同引导(吸引)蛋白质。在这项工作中,我们表征了在结构和功能上不同的NTR存在下,人和酵母中Nups的构象可塑性。焦点是Nup153的富含PxFG的域(Nup153FG PxFG ),因为其大小允许核磁共振(NMR),单分子Förster共振能量转移(smFRET)和分子动力学( MD)模拟,以表征Importinβ结合Nup153FG PxFG 的构象和动力学的局部,残基特异性以及远距离影响。在透化细胞中使用功能性NPC进行的其他布朗动力学(BD),荧光停止流和单分子转运实验,揭示了Nup和NTR之间形成复合物的详细动力学。使用这种分子整合结构生物学方法,我们提出了一种机制,通过这种机制,Nups会产生低亲和力的简约结合基序,这些基序协同作用以形成多价复合物。全球Nup的结构和动力学在很大程度上不受相互作用的影响,从而确保了各个基序的超快结合和解绑-这一结果说明了核运输如何快速而又特异性,并且可能对其他国内流离失所者的行动机制产生普遍影响。表现出多种结合基序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号