首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structure of a Chaperone-Usher Pilus Reveals the Molecular Basis of Rod Uncoiling
【2h】

Structure of a Chaperone-Usher Pilus Reveals the Molecular Basis of Rod Uncoiling

机译:分子伴侣的结构揭示了杆解开的分子基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionChaperone-usher (CU) pili are ubiquitous appendages displayed on the surface of bacterial pathogens (). They play crucial roles in infection, being responsible for recognition and adhesion to host tissues. Types 1 and P pili are archetypal CU pili produced by uropathogenic Escherichia coli (UPEC) that mediate host-pathogen interactions critical in disease and biofilm formation (). Types 1 and P pili are composed of a short tip fibrillum made of three to four different subunits (FimH, FimG, and FimF for type 1 pili and PapG, PapF, PapE, and PapK for P pili) mounted on a 1–2 μM long and helically wound rod, which is composed of ∼1,000 copies of the major pilus subunit FimA or PapA for type 1 or P pili, respectively (A) (, ).Architecture of Type 1 and P Pili, Their Assembly Mechanism via Donor-Strand Complementation and Donor-Strand Exchange, and Model Building and Refinement of the P Pilus Rod, Related to (A) Pilus subunits are transported to the periplasm through the SecYEG transporter in the inner membrane (IM), where a chaperone (FimC or PapD) assists in the folding and transport of subunits to the usher situated in the outer membrane (OM). Here, the subunits polymerize and are assembled into a pilus which can be divided into a thin ‘tip fibrillum’ and a ‘helically wound rod’.(B) Subunits are incorporated into the growing pilus through sequential steps of donor-strand exchange (DSE). The subunits are unstable on their own, as they consist of C-terminally truncated Ig-folds lacking strand G. As a result of the missing strand, a large hydrophobic groove is created where the strand G would have been if the fold had been complete. As they emerge from the SecYEG transporter, subunits are captured by the chaperone, which inserts its G1 β strand into the hydrophobic groove of the subunit thereby completing and stabilizing its fold. This is termed donor-strand complementation (DSC). The chaperone’s P1 to P4 residues are positioned in the subunits groove’s P1 to P4 pockets. The P5 pocket remains empty in DSC. In the pilus, the N-terminal extension (Nte; 10-20 residues) of each subunit provides the ‘complementing’ β strand and is thus inserted into the preceding subunit’s groove, thereby stabilizing it structurally. This is termed donor-strand exchange (DSE). The transition from DSC to DSE occurs via a zip-in-zip-out mechanism whereby the Nte of the incoming subunit occupies the previously empty P5 pocket, before inserting into the P4, P3, P2 and P1 pockets.(C) Topology diagrams of a pilus subunit during DSC and DSE. The key difference is the orientation of the inserted β strand, in DSC the chaperone’s β strand is inserted in a parallel fashion, whereas in DSE the subunit’s Nte is inserted in a more stable anti-parallel fashion. The P1-P5 pockets are indicated by filled circles, note that the P5 pocket is vacant during DSC. DS, donor strand.(D) Two independent reconstructions (map1 and map2) were used to guide refinement: models were refined against each, and evaluated against both the reconstruction used for refinement, as well as the independent reconstruction. These results indicate that the models are not overfit to the data: the difference in the agreement of models fit to map1 compared to map2 is explained by a relatively lower quality of map2. Finally, the agreement of the model fit to map1 and the full map confirms the claimed resolution of 3.8 Å.(E) Model validation statistics.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介陪伴者(CU)菌毛是细菌病原体表面上普遍存在的附肢( )。它们在感染中起关键作用,负责识别并粘附到宿主组织。 1型和P型菌毛是由尿路致病性大肠杆菌(UPEC)产生的原型CU菌毛,它介导对疾病和生物膜形成至关重要的宿主-病原体相互作用。 1型和P菌毛由短的原纤维组成,由3至4个不同的亚基(用于1型菌毛的FimH,FimG和FimF以及用于P菌毛的PapG,PapF,PapE和PapK)制成,安装在1-2μM上长且螺旋状缠绕的棒,分别由约1,000份1型或P菌毛的主要菌毛亚基FimA或PapA组成(A)(,)。<!-fig ft0-> <!-fig mode = article f1-> <!-caption a7-> Type 1和P Pili的体系结构,它们通过施主链互补和施主链交换的组装机制,以及P的模型构建和完善与(A)相关的Pilus Rod(Pilus Rod)通过内膜(IM)中的SecYEG转运蛋白转运至周质,其中分子伴侣(FimC或PapD)协助将亚基折叠和转运至位于外部的引诱剂膜(OM)。在这里,亚基聚合并组装成菌毛,菌毛可分为细的``尖端原纤维''和``螺旋缠绕的棒''。(B)通过供体-链交换(DSE)的连续步骤将亚基掺入到生长的菌毛中)。亚基本身是不稳定的,因为它们由缺乏链G的C末端截短的Ig折叠组成。由于链的缺失,如果折叠完成,则在链G所在的地方会形成一个大的疏水沟。当它们从SecYEG转运蛋白中出来时,它们被伴侣分子捕获,将其G1β链插入到亚基的疏水沟中,从而完成并稳定其折叠。这称为供体链互补(DSC)。分子伴侣的P1至P4残基位于亚基凹槽的P1至P4口袋中。 P5口袋在DSC中保持为空。在菌毛中,每个亚基的N端延伸(Nte; 10-20个残基)提供了“互补”β链,因此被插入到前一个亚基的凹槽中,从而使其结构稳定。这称为供体-链交换(DSE)。从DSC到DSE的转换是通过一种zip-in-zip-out机制实现的,由此传入子单元的Nte会在插入P4,P3,P2和P1口袋之前占据先前空的P5口袋。(C)的拓扑图DSC和DSE期间的菌毛亚基。主要区别在于插入的β链的方向,在DSC中,伴侣的β链以平行方式插入,而在DSE中,亚基的Nte以更稳定的反平行方式插入。 P1-P5口袋用实心圆圈表示,请注意,DSC期间P5口袋是空的。 DS,供体链。(D)使用两个独立的重构(map1和map2)来指导优化:针对每个模型进行优化,并针对用于优化的重构和独立重构进行评估。这些结果表明,模型并非对数据过度拟合:与map2相比,适合map1的模型在协议一致性上的差异是由map2相对较低的质量所解释的。最后,模型与map1的一致性和完整的map确认了所要求的3.8Å(E)模型验证统计数据的分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号