class='head no_bottom_margin' id='sec1title'>Int'/> Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism
【2h】

Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism

机译:运动质体系统经济学揭示了与寄生虫起源有关的进化创新

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe history of life is punctuated by the transition from free-living to parasitic organisms, a process often accompanied by profound phenotypic transformation. Parasites are a substantial component of biodiversity, and their origins coincide with major eukaryotic lineages such as Trypanosomatidae, Apicomplexa, Microsporidia, and Neodermata. Parasites affect the fitness of practically every other organism [], and they have influenced the form and function of all organisms from the earliest times [].Phylogenomics provides an opportunity to revisit the engrained view that parasitism is coupled with loss of biological complexity, specialization, and reduced evolutionary capacity []. Although celebrated cases such as obligate, intracellular pathogens like Mycoplasma [] and Microsporidia [] do have much reduced genomes and minimized physiology, most parasite genomes are, in fact, broadly comparable to those of non-parasitic model eukaryotes in size and content. Moreover, all parasite genomes show evidence for innovation and increases in functional complexity. Accurate analysis of the relative contributions of reduction and innovation to parasite evolution requires comparison of parasites not with model organisms, but with closely related non-parasites []. Yet, genomes for such free-living relatives are currently uncommon.Trypanosomatids are a major parasitic lineage with diverse hosts and include the human parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. Bodo saltans is a free-living Kinetoplastid and the closest known free-living relative of the trypanosomatid parasites []. Comparison of the T. brucei, T. cruzi, and L. major genome sequences [, , ] revealed their species-specific features, conspicuous against a background of widespread structural conservation [, ]. Many of their shared features could conceivably relate to a parasitic life strategy, such the absence of biosynthetic pathways for haem, purines, and aromatic amino acids. However, without a free-living outgroup for such comparisons, it has been impossible to define shared features that are parasite specific, and therefore plausibly adaptive, and to distinguish these from features shared by kinetoplastids generally.The absence of a free-living comparator has also impeded an explanation of species-specific features, most obviously the gene families that encode the enigmatic cell-surface proteins specific to each lineage [], such as the variant surface glycoprotein (VSG) in T. brucei, trans-sialidase (TS) and dispersed gene family 1 (DGF-1) in T. cruzi, and promastigote surface antigen (PSA) and δ-amastin in Leishmania spp. It is unknown whether free-living kinetoplastids possess homologs of these genes and, if so, how they were modified for their prominent role in parasites.Here we report the Bodo saltans genome sequence in comparison with trypanosomatids. We aim to identify the principal genomic changes associated with the ancestral trypanosomatid and so uncover the relative contributions of genomic reduction and innovation to the origin of parasitism. We show that although trypanosomatid genomes have become “streamlined,” gene families crucial for nutrient scavenging and host interactions have been elaborated, and we demonstrate that the enigmatic cell-surface gene families of different parasites originated through radical reorganization of common ancestral structures.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介从自由生活到寄生生物的转变标志着生命的历史,过程通常伴随着深刻的表型转化。寄生虫是生物多样性的重要组成部分,其起源与主要的真核生物谱系(如锥虫,蚜虫,微孢子虫和新皮虫)重合。寄生虫几乎影响所有其他生物的适应性[],并且最早就影响了所有生物的形式和功能[]。人类经济学为重新认识根深蒂固的观点提供了机会,这种观点认为寄生性伴随着生物复杂性的丧失,专业化。 ,并降低了进化能力[]。尽管著名的病例,如专性的,胞内病原体,例如支原体[]和微孢子虫[],确实具有大大减少的基因组和最小的生理机能,但实际上,大多数寄生虫基因组的大小和含量都与非寄生虫型真核生物大致相当。而且,所有寄生虫基因组都显示出创新的证据,并且增加了功能复杂性。准确分析减少和创新对寄生虫进化的相对贡献,需要将寄生虫与模型生物而不是与紧密相关的非寄生虫进行比较[]。然而,此类自由生活的亲戚的基因组目前并不常见。锥虫是主要寄生虫谱系,宿主多种多样,包括人类寄生虫布鲁氏锥虫,克鲁氏锥虫和利什曼原虫。 Bodo saltans是一种自由活动的动植物体,是锥虫病寄生虫中最接近的已知自由活动的亲戚。布鲁氏菌,克鲁斯氏菌和L. L.主要基因组序列的比较显示了它们的物种特异性特征,在广泛的结构保守性背景下很显眼。可以想象,它们的许多共同特征可能与寄生生命策略有关,例如缺少血红素,嘌呤和芳香族氨基酸的生物合成途径。但是,如果没有这样一个自由生存的外部群体,就不可能定义寄生虫特有的共享特征,因此可能是自适应的,并且无法将它们与动素体普遍共享的特征区分开来。也阻碍了对物种特异性特征的解释,最明显的是编码编码每个谱系的神秘细胞表面蛋白的基因家族,例如布鲁氏杆菌中的变异表面糖蛋白(VSG),转唾液酸酶(TS)并在克鲁氏酵母中分散了基因家族1(DGF-1),在利什曼原虫中分散了前鞭毛体表面抗原(PSA)和δ-amastin。尚不知道自由活动的动质体是否具有这些基因的同源物,如果存在,是否对其进行修饰以使其在寄生虫中的显着作用。在此,我们报道了与锥虫相比,Bodo saltans基因组序列。我们旨在确定与祖先锥虫病相关的主要基因组变化,从而揭示基因组减少和创新对寄生虫起源的相对贡献。我们表明尽管锥虫基因组已被“简化”,但对养分清除和宿主相互作用至关重要的基因家族已被阐明,并且我们证明了不同寄生虫的神秘细胞表面基因家族是通过共同祖先结构的自由基重组而产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号