首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes
【2h】

Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes

机译:Dynein聚集到吞噬体上的脂质微区中以驱动向溶酶体的快速转运。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMicrotubule motors of the kinesin and dynein families drive many cellular processes such as organelle transport, chromosome segregation, and beating of cilia/flagella. This diversity of function requires the cellular localization and activity of motors to be regulated in many ways (). Regulation of motors at the single-molecule level by motor-associated regulatory proteins has been studied extensively (, ). However, most cellular functions require large forces that can only be generated collectively by a team of many motors (). Little is known about how such motor teams are assembled at appropriate cellular locations before they can execute a specific task. The substrate on which motor teams must assemble inside cells is usually a lipid membrane, for example, the bilayer membrane covering vesicular cargoes that are transported by motors. We therefore wondered if motor recruitment to a lipid membrane can be controlled by the membrane itself, perhaps in coordination with other membrane-bound proteins that regulate vesicle trafficking (e.g., Rab GTPases).In this respect, the heterogeneity of biological membranes is of particular interest. Cholesterol and sphingolipids appear enriched within lipid microdomains (also known as lipid rafts), where they enhance membrane packing to promote microdomain formation (, , ). This process is likely facilitated by a combination of protein-lipid and protein-protein interactions, because microdomains are enriched in specific proteins (e.g., glycosylphosphatidylinositol [GPI]-anchored proteins) and may be maintained by active processes that drive the membrane away from thermodynamic equilibrium (). Motors could be localized to microdomains by direct binding to lipids () or via adaptor proteins (). Membranous regions of high motor density could potentially be created by clustering many copies of a motor within a microdomain. Such geometrical clustering may be of advantage if multiple motors are to work cooperatively as a team (, ). Geometrical arguments suggest that motor clustering is necessary for efficient transport of micron-sized cargoes (). Indeed, cooperative improvement in transport of artificial liposomes through clustering-induced dimerization of kinesin-3 motors has been reported (). A minus-end-directed kinesin is also shown to localize into membrane domains near the apical subplasma membrane of polarized epithelial cells ().However, the functional relevance of clustering of motors and its impact on specific cellular processes is unknown. In this context, the appearance of microdomains on phagosomes with maturation is particularly interesting (href="#bib8" rid="bib8" class=" bibr popnode">Dermine et al., 2001, href="#bib9" rid="bib9" class=" bibr popnode">Dermine et al., 2005, href="#bib15" rid="bib15" class=" bibr popnode">Goyette et al., 2012). Phagocytosis and subsequent encapsulation of microbes into a membranous vesicle result in the formation of a phagosome. Phagosome maturation is intimately connected to microtubule (MT) motor-driven motion. Early phagosomes (EPs) move in a bidirectional (back-and-forth) manner on MTs, when they physically interact with and exchange lipids and proteins with endosomes (href="#bib5" rid="bib5" class=" bibr popnode">Blocker et al., 1997, href="#bib44" rid="bib44" class=" bibr popnode">Vieira et al., 2002). Intriguingly, this motion changes as the phagosome matures, so that late phagosomes (LPs) exhibit rapid unidirectional dynein-driven transport toward the MT minus end. The mechanism of this change is important to understand because it facilitates fusion of phagosomes with perinuclear lysosomes and is essential for pathogen clearance. MT depolymerization blocks delivery of fluid phase markers from endosomes to phagosomes and also reduces phagosome-lysosome fusion (href="#bib4" rid="bib4" class=" bibr popnode">Blocker et al., 1996, href="#bib11" rid="bib11" class=" bibr popnode">Desjardins et al., 1994, href="#bib17" rid="bib17" class=" bibr popnode">Harrison et al., 2003). Importantly, pathogens such as Mycobacterium tuberculosis (href="#bib39" rid="bib39" class=" bibr popnode">Sun et al., 2007) and Salmonella (href="#bib18" rid="bib18" class=" bibr popnode">Harrison et al., 2004) specifically inhibit this switch to dynein-dependent transport as a survival strategy.We therefore wondered if microdomains on the phagosome membrane could upregulate dynein-driven transport of phagosomes. Cholesterol appears to be a major player in microdomain formation on cellular membranes (href="#bib28" rid="bib28" class=" bibr popnode">Mayor and Rao, 2004, href="#bib33" rid="bib33" class=" bibr popnode">Rao and Mayor, 2014, href="#bib35" rid="bib35" class=" bibr popnode">Simons and Ikonen, 1997). Dynein-driven transport of endosomes increases in cholesterol storage disorders like Niemann-Pick disease, where cholesterol-laden “paralyzed” endosomes cluster around the MT minus ends (href="#bib24" rid="bib24" class=" bibr popnode">Lebrand et al., 2002). Cholesterol accumulation into endolysosomes results in cholesterol-poor phagosomes that are unable to fuse with lysosomes (href="#bib20" rid="bib20" class=" bibr popnode">Huynh et al., 2008). Interestingly, the GTPase Rab7 that recruits dynein to phagosomes interacts with the cholesterol sensor ORP1L (href="#bib34" rid="bib34" class=" bibr popnode">Rocha et al., 2009) and is enriched in a cholesterol-rich detergent resistant fraction of phagosomal membranes (href="#bib15" rid="bib15" class=" bibr popnode">Goyette et al., 2012).Taken together, the above observations suggest a molecular connection between dynein, Rab7, and cholesterol within microdomains on the phagosome membrane. Here, we show using multiple experimental approaches that dynein clusters into microdomains on the membrane of a phagosome as it matures inside cells. This geometrical clustering allows many dyneins to simultaneously contact a single MT and generate large cooperative force. This force drives rapid retrograde transport of late phagosomes (LPs), likely enabling their fusion with degradative lysosomes. We also show that lipophosphoglycan, the main molecule used by pathogenic Leishmania donovani parasites to survive inside macrophages, specifically disrupts the clustering of dynein on LP membranes to block retrograde transport of LPs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介驱动蛋白和动力蛋白家族的微管马达驱动许多细胞过程,例如细胞器运输,染色体分离和纤毛/鞭毛的跳动。功能的这种多样性要求以多种方式调节马达的细胞定位和活动()。广泛研究了与运动相关的调节蛋白对单分子水平的运动的调节(,)。但是,大多数细胞功能需要很大的力,这些力只能由许多电机组共同产生。对于这样的汽车团队如何执行特定的任务之前如何组装在适当的蜂窝位置,人们所知甚少。马达团队必须在其内部组装细胞的底物通常是脂质膜,例如,覆盖由马达运输的囊状货物的双层膜。因此,我们想知道是否可以通过膜本身来控制运动募集到脂质膜上,也许与其他调节囊泡运输的膜结合蛋白(例如Rab GTPases)协同作用。在这方面,生物膜的异质性尤其重要利益。胆固醇和鞘脂似乎在脂质微域(也称为脂质筏)中富集,在那里它们增强了膜的堆积,从而促进了微域的形成(,)。蛋白质-脂质和蛋白质-蛋白质相互作用的组合可能会促进此过程,因为微区富含特定蛋白质(例如,糖基磷脂酰肌醇[GPI]锚定的蛋白质),并且可以通过使膜脱离热力学的主动过程来维持平衡()。可以通过直接结合脂质()或通过衔接蛋白()将马达定位于微区。通过在微域内聚集许多副本的马达,可能会创建高马达密度的膜状区域。如果多个电动机作为一个团队协同工作,则这种几何聚类可能是有利的。几何学上的论点表明,为了有效地运输微米级货物(),必须进行电动机群集。实际上,已经报道了通过聚集诱导的驱动蛋白3电机二聚化,人工脂质体运输的协同改善()。还显示了负端导向的驱动蛋白位于极化上皮细胞顶质膜附近的膜结构域中,但是,运动簇的功能相关性及其对特定细胞过程的影响尚不清楚。在这种情况下,在具有成熟的吞噬体上出现微区特别有趣(href="#bib8" rid="bib8" class=" bibr popnode"> Dermine et al。,2001 ,href =“#bib9” rid =“ bib9” class =“ bibr popnode”> Dermine等人,2005 ,href="#bib15" rid="bib15" class=" bibr popnode"> Goyette等等,2012 )。吞噬作用和随后将微生物封装到膜囊泡中导致吞噬体的形成。吞噬体的成熟与微管(MT)电机驱动的运动紧密相连。早期吞噬体(EP)在MT上以双向(来回)方式移动,当它们与内体发生相互作用并交换脂质和蛋白质时(href =“#bib5” rid =“ bib5” class =“ bibr popnode“> Blocker等人,1997 ,href="#bib44" rid="bib44" class=" bibr popnode"> Vieira等人,2002 )。有趣的是,这种运动随着吞噬体的成熟而改变,因此晚期吞噬体(LP)表现出快速的单向性动力蛋白驱动的MT负向转运。理解这种变化的机制很重要,因为它有助于吞噬体与核周溶酶体融合,并且对于清除病原体至关重要。 MT解聚反应阻止了液相标记物从内体向吞噬体的传递,并减少了吞噬体与溶酶体的融合(href="#bib4" rid="bib4" class=" bibr popnode"> Blocker等,1996 ,href="#bib11" rid="bib11" class=" bibr popnode"> Desjardins等,1994 ,href =“#bib17” rid =“ bib17” class =“ bibr popnode “> Harrison等人,2003 )。重要的是,诸如结核分枝杆菌(href="#bib39" rid="bib39" class=" bibr popnode"> Sun等,2007 )和沙门氏菌(href =“#bib18” rid =“ bib18” class =“ bibr popnode”>哈里森等人。,2004 )作为生存策略特别抑制了这种向动力蛋白依赖性运输的转换。因此,我们想知道吞噬体膜上的微区是否可以上调动力蛋白驱动的吞噬体运输。胆固醇似乎是细胞膜微区形成的主要参与者(href="#bib28" rid="bib28" class=" bibr popnode"> Mayor and Rao,2004 ,href =“# bib33“ rid =” bib33“ class =” bibr popnode“>饶和马约尔,2014 ,href="#bib35" rid="bib35" class=" bibr popnode">西蒙斯和伊科宁,1997 < / a>)。达尼丁驱动的内体运输增加了胆固醇存储失调,如尼曼-皮克病,其中胆固醇含量高的“瘫痪”内体聚集在MT负端周围(href =“#bib24” rid =“ bib24” class =“ bibr popnode “> Lebrand等,2002 )。胆固醇向溶酶体中的蓄积导致胆固醇不足的吞噬体无法与溶酶体融合(href="#bib20" rid="bib20" class=" bibr popnode"> Huynh等人,2008 )。有趣的是,募集动力蛋白到吞噬体的GTPase Rab7与胆固醇传感器ORP1L相互作用(href="#bib34" rid="bib34" class=" bibr popnode"> Rocha et al。,2009 )。富含吞噬体膜的富含胆固醇的去污剂抗性部分(href="#bib15" rid="bib15" class=" bibr popnode"> Goyette等,2012 )。观察结果表明,吞噬体膜微区中的动力蛋白,Rab7和胆固醇之间存在分子连接。在这里,我们显示了使用多种实验方法,当吞噬体在细胞内部成熟时,动力蛋白会聚集成微膜。这种几何聚类使许多达因可以同时接触单个MT并产生较大的协同力。该力驱动晚期吞噬体(LP)的快速逆行转运,可能使它们与降解的溶酶体融合。我们还显示,脂质磷酸聚糖是致病性利什曼原虫donovani寄生虫用来在巨噬细胞内生存的主要分子,它特别破坏了动力性蛋白在LP膜上的聚集,从而阻止了LP的逆行运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号