首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Replication-Independent Histone Variant H3.3 Controls Animal Lifespan through the Regulation of Pro-longevity Transcriptional Programs
【2h】

Replication-Independent Histone Variant H3.3 Controls Animal Lifespan through the Regulation of Pro-longevity Transcriptional Programs

机译:复制无关的组蛋白变体H3.3通过延长寿命的转录程序的调控来控制动物的寿命。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe accessibility to the nuclear genetic code regulates transcriptional programs, controls genomic integrity, and critically influences proliferation and differentiation of eukaryotic cells. The maintenance of chromatin plasticity plays an essential role in stress responses as well as dynamic homeostatic adaptations to environmental cues (, , ). The fundamental repeating unit of chromatin is the nucleosome, consisting of 147 bp of DNA wrapped around an octamer of histone proteins. The formation of local chromatin subdomains with a distinct DNA accessibility depends on the intrinsic biochemical properties of the nucleosome components (). The replacement of canonical histones with histone variants often alters the DNA binding and its compaction around the core particle. While canonical histones are highly expressed exclusively during S phase, variant counterparts are expressed throughout the cell cycle and their incorporation occurs in a replication-independent manner (). Exciting new insights have uncovered the relevance of histone variants as regulatory elements of local chromatin structure and dynamics (, , , ). Histone variants contain unique larger domains or have limited differences in the amino acid sequences compared to their canonical counterparts. The histone variant H3.3 is evolutionarily conserved throughout the animal kingdom (). Compared to canonical H3, the four AAIG residues in positions 87 to 90 define the motif recognition for the specific binding to the histone chaperones HIRA and DAXX (, , , ). In invertebrates as well as in mammals, two genes encode for an identical H3.3 protein. In the nematode Caenorhabditis elegans, H3.3 is highly expressed and incorporated during embryogenesis, in different larval stages, and in adult animals (). Similar expression profiles are observed in other metazoans (href="#bib3" rid="bib3" class=" bibr popnode">Banaszynski et al., 2010). H3.3-containing nucleosomes may mark transcriptionally active chromatin, influencing a large number of biological processes (href="#bib10" rid="bib10" class=" bibr popnode">Henikoff, 2009). In neurons, activity-dependent transcription of selected immediate early genes requires DAXX/ATRX-mediated loading of H3.3 in a calcium- and calcineurin-dependent manner (href="#bib19" rid="bib19" class=" bibr popnode">Michod et al., 2012). Consistently, loss of HIRA-mediated H3.3 loading critically impairs chromatin homeostasis and transcriptional regulation in postmitotic cells (href="#bib21" rid="bib21" class=" bibr popnode">Nashun et al., 2015). Moreover, H3.3 proteins reach saturation levels in postnatal brains of both rodents and humans (href="#bib18" rid="bib18" class=" bibr popnode">Maze et al., 2015, href="#bib24" rid="bib24" class=" bibr popnode">Piña and Suau, 1987). As shown recently, the dynamic turnover of H3.3 is considered a novel epigenetic mechanism regulating plasticity in fully differentiated cells (href="#bib18" rid="bib18" class=" bibr popnode">Maze et al., 2015, href="#bib36" rid="bib36" class=" bibr popnode">Wenderski and Maze, 2016). Because H3.3 accumulates significantly in post-replicative cells, one should expect a critical contribution of H3.3 to age-related changes of chromatin organization and DNA accessibility, with important consequences on organismal aging. Despite the biological relevance of this intriguing possibility, the importance of H3.3 in pro-longevity signaling pathways still remains unaddressed (href="#bib29" rid="bib29" class=" bibr popnode">Saade et al., 2015). Here, we use C. elegans to elucidate the importance of the replication-independent histone variant H3.3 in the context of diverse pro-longevity signaling pathways. We demonstrate that genetic deletion of H3.3 impairs the lifespan extension of various long-lived mutants. Notably, insulin/IGF-1/DAF-2 mutant animals lacking H3.3 exhibit an altered pattern of gene expression, including many DAF-16 target genes. Taken together, our study clearly demonstrates the relevance of H3.3-mediated epigenetic processes that control lifespan-extending signaling pathways.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介核基因密码的可访问性可调节转录程序,控制基因组完整性,并具有关键影响真核细胞的增殖和分化。染色质可塑性的维持在应激反应以及对环境线索的动态稳态调节中起着至关重要的作用(,,)。染色质的基本重复单元是核小体,由包裹在组蛋白八聚体周围的147 bp DNA组成。具有独特的DNA可及性的局部染色质亚结构域的形成取决于核小体成分的固有生化特性。用组蛋白变体替代规范组蛋白经常会改变DNA结合及其在核心颗粒周围的紧实度。虽然规范组蛋白仅在S期高表达,但变异对应物在整个细胞周期中表达,它们的掺入以复制非依赖性方式发生()。令人兴奋的新见解揭示了组蛋白变体作为局部染色质结构和动力学的调控元件的相关性(“,,,)。与标准对应物相比,组蛋白变体包含独特的较大结构域或氨基酸序列差异有限。组蛋白变体H3.3在整个动物界均在进化上是保守的()。与标准H3相比,位置87至90上的四个AAIG残基定义了与组蛋白分子伴侣HIRA和DAXX(,,,)特异性结合的基序识别。在无脊椎动物和哺乳动物中,两个基因编码相同的H3.3蛋白。在线虫秀丽隐杆线虫中,H3.3在胚胎发生过程中,不同的幼虫阶段以及成年动物中高表达和掺入()。在其他后生动物中也观察到类似的表达谱(href="#bib3" rid="bib3" class=" bibr popnode"> Banaszynski et al。,2010 )。含H3.3的核小体可能标记了转录活性染色质,影响了大量的生物过程(href="#bib10" rid="bib10" class=" bibr popnode"> Henikoff,2009 )。在神经元中,选定的立即早期基因的活动依赖性转录需要以钙和钙调神经磷酸酶依赖性的方式由DAXX / ATRX介导的H3.3加载(href =“#bib19” rid =“ bib19” class =“ bibr popnode“> Michod等人,2012 )。一致地,HIRA介导的H3.3负载的丧失严重损害了有丝分裂后细胞的染色质稳态和转录调控(href="#bib21" rid="bib21" class=" bibr popnode"> Nashun等,2015 )。此外,H3.3蛋白在啮齿动物和人类的出生后大脑中均达到饱和水平(href="#bib18" rid="bib18" class=" bibr popnode"> Maze等人,2015 ,< a href =“#bib24” rid =“ bib24” class =“ bibr popnode”>皮尼亚和苏奥,1987年)。如最近所示,H3.3的动态更新被认为是调节完全分化细胞可塑性的新型表观遗传机制(href="#bib18" rid="bib18" class=" bibr popnode"> Maze et al。,2015 ,href="#bib36" rid="bib36" class=" bibr popnode">温德斯基和迷宫,2016 )。因为H3.3在复制后细胞中大量积累,所以人们应该期望H3.3对与年龄相关的染色质组织和DNA可及性变化具有关键作用,并对机体衰老产生重要影响。尽管这种潜在可能性具有生物学相关性,但H3.3在延长寿命的信号通路中的重要性仍未得到解决(href="#bib29" rid="bib29" class=" bibr popnode"> Saade等。, 2015 )。在这里,我们使用秀丽隐杆线虫(C.elegans)来阐明在多种延长寿命的信号通路中独立于复制的组蛋白变体H3.3的重要性。我们证明,H3.3的遗传删除损害了各种长寿命突变体的寿命延长。值得注意的是,缺乏H3.3的胰岛素/ IGF-1 / DAF-2突变动物表现出改变的基因表达模式,包括许多DAF-16靶基因。两者合计,我们的研究清楚地证明了控制寿命延长信号通路的H3.3介导表观遗传过程的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号