首页> 美国卫生研究院文献>Elsevier Sponsored Documents >DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation
【2h】

DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation

机译:人造血干细胞分化的DNA甲基化动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAll blood cells originate from hematopoietic stem cells (HSCs), which represent the apex of a differentiation cascade of progenitor cell types that gives rise to billions of new cells every day. HSC differentiation is believed to progress through stepwise restriction of lineage potential, a concept that is summarized by the classical tree model of murine hematopoiesis (, ).HSC differentiation in human is less well understood than in mouse. Despite recent progress (reviewed in , , ), several aspects of human hematopoiesis have remained controversial (, , , , , , ).We sought to use DNA methylation for in vivo dissection of human hematopoiesis. DNA methylation is well suited for studying cellular differentiation because its patterns are cell-type-specific and retain an epigenetic memory of a cell’s developmental history. For example, cell-of-origin-specific DNA methylation patterns are detectable among induced pluripotent stem cells (, ), and such patterns of epigenetic tissue memory predict primary tumor location in metastatic cancers (, href="#bib35" rid="bib35" class=" bibr popnode">Moran et al., 2016).Previous studies have established a close connection between stem cell differentiation and widespread epigenome remodeling. DNA methylation has been studied in early mammalian development (href="#bib44" rid="bib44" class=" bibr popnode">Smallwood et al., 2011, href="#bib45" rid="bib45" class=" bibr popnode">Smith et al., 2012), mouse HSC differentiation (href="#bib5" rid="bib5" class=" bibr popnode">Bock et al., 2012, href="#bib9" rid="bib9" class=" bibr popnode">Cabezas-Wallscheid et al., 2014, href="#bib21" rid="bib21" class=" bibr popnode">Ji et al., 2010), neural differentiation (href="#bib31" rid="bib31" class=" bibr popnode">Lister et al., 2013), pluripotent stem cells (href="#bib4" rid="bib4" class=" bibr popnode">Bock et al., 2011, href="#bib20" rid="bib20" class=" bibr popnode">Habibi et al., 2013), and a broad collection of human tissue samples (href="#bib28" rid="bib28" class=" bibr popnode">Kundaje et al., 2015, href="#bib57" rid="bib57" class=" bibr popnode">Ziller et al., 2013). Chromatin accessibility has been mapped using the assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) in multiple cell types of the human blood lineage (href="#bib11" rid="bib11" class=" bibr popnode">Corces et al., 2016), and three recent studies used chromatin immunoprecipitation sequencing (ChIP-seq) to map histone modifications in the developing mouse embryo (href="#bib12" rid="bib12" class=" bibr popnode">Dahl et al., 2016, href="#bib32" rid="bib32" class=" bibr popnode">Liu et al., 2016, href="#bib56" rid="bib56" class=" bibr popnode">Zhang et al., 2016).To establish a basis for epigenome-wide analysis and data-driven modeling of the human hematopoietic lineage, we applied our protocol for low-input and single-cell whole genome bisulfite sequencing (href="#bib15" rid="bib15" class=" bibr popnode">Farlik et al., 2015) to 17 hematopoietic cell types (href="/pmc/articles/PMC5145815/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A). HSCs and multipotent progenitors (MPPs) were sorted from fetal liver, cord blood, bone marrow, and peripheral blood. Eight additional progenitor cell types and six differentiated cell types were sorted from peripheral blood, and megakaryocytes were sorted from bone marrow. For each stem and progenitor cell type, we sequenced an average of 32 low-input methylomes from three individuals, and we bioinformatically integrated them into meta-epigenomic profiles (href="#bib53" rid="bib53" class=" bibr popnode">Wijetunga et al., 2014). Additionally, we sequenced an average of 26 single-cell methylomes for seven cell types (HSC, MPP, common lymphoid progenitor [CLP], common myeloid progenitor [CMP], immature multi-lymphoid progenitor [MLP0], granulocyte macrophage progenitor [GMP], and megakaryocytes) to assess cell-to-cell heterogeneity.href="/pmc/articles/PMC5145815/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5145815_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC5145815/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC5145815/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Charting the DNA Methylation Landscape of Human Hematopoietic Differentiation(A) Conceptual outline of human hematopoietic differentiation, highlighting the 17 hematopoietic cell types whose genome-wide DNA methylation patterns were profiled in this study. Arrows denote established differentiation trajectories, dashed arrows indicate uncertainty about the in vivo differentiation potential of lymphoid progenitors, and the inset illustrates the sorting of four subsets of immature multi-lymphoid progenitors.(B) Fluorescence-activated cell sorting panel used to purify 10 stem and progenitor cell types from peripheral blood.(C) Violin plots and boxplots showing the distribution of DNA methylation levels in 5-kb tiling regions for hematopoietic cell types sorted from peripheral blood.(D) Distribution of DNA methylation levels across cell types for different sets of genomic regions. Gene and promoter annotations are based on GENCODE, CpG islands are from the UCSC Table Browser, enhancer elements are from Ensembl, and tiling regions were calculated with a custom script.(E) Distribution of average DNA methylation levels across cell types for putative regulatory regions annotated by the Ensembl BLUEPRINT Regulatory Build.(F) DNA methylation at putative regulatory regions for illustrative gene loci. Black bars denote the position of regions annotated by the BLUEPRINT Regulatory Build, and dashed horizontal black lines indicate sample medians for the respective regions. Colored vertical bars connect the highest and lowest DNA methylation levels that have been measured in any sample of the indicated cell type.dis, distal element; prox, proximal element; TSS, transcriptional start site. See also href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1 and href="http://blueprint-methylomes.computational-epigenetics.org" data-ga-action="click_feat_suppl" ref="reftype=extlink&article-id=5145815&issue-id=280608&journal-id=445&FROM=Article%7CBody&TO=External%7CLink%7CURI" target="_blank">http://blueprint-methylomes.computational-epigenetics.org.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介所有血细胞均来自造血干细胞(HSC),代表造血干细胞的顶点祖细胞类型的分化级联,每天产生数十亿个新细胞。 HSC分化被认为是通过逐步限制谱系潜能来进行的,这一概念已被鼠类造血的经典树模型所概括。人类对HSC的分化了解程度远不及小鼠。尽管有新进展(在````中进行了综述),但人类造血的几个方面仍存在争议(````````)。我们试图使用DNA甲基化技术进行人造血的体内解剖。 DNA甲基化非常适合研究细胞分化,因为其模式是特定于细胞类型的,并保留了细胞发育史的表观遗传记忆。例如,在诱导的多能干细胞(,)中可检测到起源于细胞的特定DNA甲基化模式,而这种表观遗传组织记忆模式可预测转移性癌症中的原发性肿瘤位置(,href =“#bib35” rid = “ bib35” class =“ bibr popnode”> Moran等人,2016 )。先前的研究已经建立了干细胞分化与广泛的表观基因组重塑之间的紧密联系。 DNA甲基化已在哺乳动物早期发育中进行了研究(href="#bib44" rid="bib44" class=" bibr popnode"> Smallwood等,2011 ,href =“#bib45” rid =“ bib45” class =“ bibr popnode”>史密斯等人,2012 ),鼠标HSC分化(href="#bib5" rid="bib5" class=" bibr popnode">博克等人) 。,2012 ,href="#bib9" rid="bib9" class=" bibr popnode"> Cabezas-Wallscheid等人,2014 ,href =“#bib21”摆脱=“ bib21” class =“ bibr popnode”> Ji等人,2010 ),神经分化(href="#bib31" rid="bib31" class=" bibr popnode"> Lister等人。 ,2013 ),多能干细胞(href="#bib4" rid="bib4" class=" bibr popnode"> Bock等人,2011 ,href =“#bib20 “ rid =” bib20“ class =” bibr popnode“> Habibi等人,2013 ),以及各种人体组织样本的集合(href =”#bib28“ rid =” bib28“ class =” bibr popnode“> Kundaje等人,2015 ,href="#bib57" rid="bib57" class=" bibr popnode"> Ziller等人,2013 )。使用高通量测序(ATAC-seq)在人类血液谱系的多种细胞类型中通过转座酶可接近的染色质测定法对染色质可访问性进行了映射(href =“#bib11” rid =“ bib11” class =“ bibr popnode “> Corces等人,2016 ),最近的三项研究使用染色质免疫沉淀测序(ChIP-seq)来绘制发育中的小鼠胚胎中的组蛋白修饰(href =”#bib12“ rid =” bib12“ class =“ bibr popnode”>达尔等人,2016 ,href="#bib32" rid="bib32" class=" bibr popnode">刘等人,2016 ,< a href =“#bib56” rid =“ bib56” class =“ bibr popnode”> Zhang等人,2016 )。为人类造血谱系的表观基因组分析和数据驱动建模奠定基础,我们将协议用于低输入量和单细胞全基因组亚硫酸氢盐测序(href="#bib15" rid="bib15" class=" bibr popnode"> Farlik et al。,2015 ) 17种造血细胞类型(href =“ / pmc / articles / PMC5145815 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 A)。从胎儿肝,脐带血,骨髓和外周血中筛选出HSC和多能祖细胞(MPP)。从外周血中筛选出八种其他祖细胞类型和六种分化的细胞类型,并从骨髓中筛选出巨核细胞。对于每种干细胞和祖细胞类型,我们对来自三个个体的32个低输入甲基基因组进行了平均测序,并将其生物信息学整合到元表观基因组配置文件中(href =“#bib53” rid =“ bib53” class =“ bibr popnode“> Wijetunga等人,2014 )。此外,我们对7种细胞类型(HSC,MPP,常见淋巴祖细胞[CLP],常见髓样祖细胞[CMP],未成熟多淋巴祖细胞[MLP0],粒细胞巨噬细胞祖细胞[GMP])的平均26个单细胞甲基化测序。和巨核细胞)以评估细胞间异质性。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC5145815 / figure / fig1 / “ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> class =” inline_block ts_canvas“ href =” / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 5145815_gr1.jpg“ target =” tileshopwindow“> < target =“ object” href =“ / pmc / articles / PMC5145815 / figure / fig1 /?report = objectonly”>在单独的窗口中打开 class =“ figpopup” href =“ / pmc / articles / PMC5145815 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“>图1 <!-标题a7->人类造血分化的DNA甲基化景观(A)人类造血分化的概念轮廓,突出了本研究中描述了全基因组DNA甲基化模式的17种造血细胞类型。箭头表示已建立的分化轨迹,虚线箭头表示关于淋巴样祖细胞体内分化潜能的不确定性,插图表示未成熟的多淋巴祖细胞的四个子集的分选。(B)用于纯化10个茎的荧光激活细胞分选板(C)小提琴图和箱形图显示了从外周血中分选的造血细胞类型在5kb拼接区域中DNA甲基化水平的分布。(D)不同细胞类型的DNA甲基化水平的分布基因组区域集。基因和启动子注释基于GENCODE,CpG岛来自UCSC表格浏览器,增强子元素来自Ensembl,并使用自定义脚本计算切片区域。(E)假定的调控区域跨细胞类型的平均DNA甲基化水平分布由Ensembl BLUEPRINT法规内部版本(F)注释,其位于假定的调控区域的DNA甲基化用于示例性基因位点。黑条表示由BLUEPRINT规范构建注释的区域的位置,水平的黑色虚线表示各个区域的样本中位数。彩色竖线连接已在指示细胞类型的任何样品中测量的最高和最低DNA甲基化水平。接近,近端元件; TSS,转录起始位点。另请参见href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 和href =“ http://blueprint-methylomes.computational-epigenetics.org”数据-ga-action =“ click_feat_suppl” ref =“ reftype = extlink&article-id = 5145815&issue-id = 280608&journal-id = 445&FROM = Article%7CBody&TO = External%7CLink%7CURI” target =“ _blank”> http:// blueprint-methylomes .computational-epigenetics.org 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号