class='head no_bottom_margin' id='sec1title'>Int'/> Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging
【2h】

Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging

机译:减少的胰岛素/ IGF-1信号恢复了衰老过程中关键应激颗粒蛋白的动态特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionYoung, healthy organisms strive to maintain their proteome in a functional state through the tight control of rates of protein synthesis, folding, and degradation. Extensive quality-control systems are set up throughout the cell to prevent and manage protein damage. As the organism ages, these control mechanisms become less efficient, leading to a disruption in protein homeostasis (, ). Aging is the main risk factor for a variety of neurodegenerative diseases where specific proteins accumulate as pathological aggregates. Recently, there has been considerable interest in investigating widespread protein aggregation in the absence of disease. Multiple studies have demonstrated that several hundred proteins become highly detergent-insoluble in aged animals (, , , , , , ). Computational analysis of the insoluble proteome indicates an overrepresentation of proteins with functional and structural similarities (). The examination of some of these proteins in vivo reveals their assembly into large “solid” aggregates with age similar to those formed in the context of disease. The discovery of endogenous age-dependent protein aggregation in model organisms gives us the unprecedented opportunity to dissect the intrinsic cellular machineries responsible for preventing protein aggregation without using ectopically expressed human disease-associated proteins. At this time, very little is known concerning the regulation of widespread protein insolubility with age and its consequences for the health of the organism. Interestingly, several studies show that protein insolubility is modified in long-lived animals with reduced insulin/insulin growth factor (IGF)-1 daf-2 signaling, but it remains unclear to which extent (, , ).A growing number of familial and sporadic forms of neurodegenerative diseases show pathological inclusions caused by abnormal aggregation of RNA-binding proteins (RBPs). The first RBPs identified in these inclusions were TAR DNA binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) (, , href="#bib35" rid="bib35" class=" bibr popnode">Neumann et al., 2006). Since then additional RBPs such as TAF15, EWSR1, hnRNPA2B1, hnRNPA1, and hnRNPA3 have been associated with neurodegenerative diseases (href="#bib23" rid="bib23" class=" bibr popnode">Kim et al., 2013, href="#bib37" rid="bib37" class=" bibr popnode">Neumann et al., 2011). All of the known RBPs associated with dementia contain a low-complexity (LC) “prion-like” domain enriched in glycines and uncharged polar amino acids, and similar to the sequences driving yeast prion aggregation (href="#bib1" rid="bib1" class=" bibr popnode">Alberti et al., 2009, href="#bib25" rid="bib25" class=" bibr popnode">King et al., 2012). Mutations in this domain enhance pathology by accelerating aggregation (href="#bib19" rid="bib19" class=" bibr popnode">Johnson et al., 2009, href="#bib23" rid="bib23" class=" bibr popnode">Kim et al., 2013). LC prion-like domains are also present in key RBPs that mediate the assembly of RNA granules by liquid-liquid phase separation (href="#bib30" rid="bib30" class=" bibr popnode">Lin et al., 2015, href="#bib31" rid="bib31" class=" bibr popnode">Molliex et al., 2015, href="#bib34" rid="bib34" class=" bibr popnode">Murakami et al., 2015, href="#bib39" rid="bib39" class=" bibr popnode">Patel et al., 2015). Significantly, a small proportion of liquid droplets made by RBPs transform into solid aggregates over time in vitro (href="#bib30" rid="bib30" class=" bibr popnode">Lin et al., 2015, href="#bib31" rid="bib31" class=" bibr popnode">Molliex et al., 2015, href="#bib34" rid="bib34" class=" bibr popnode">Murakami et al., 2015, href="#bib39" rid="bib39" class=" bibr popnode">Patel et al., 2015). For clarity, we will use the term aggregation only when referring to the formation of non-dynamic RBP aggregates. An important question is whether the special assembly properties of RBPs puts them at risk of aggregating during aging in a multicellular organism and not just in the context of disease. Interestingly, several RBPs with LC prion-like domains were identified in the insoluble proteome of aged animals (href="#bib11" rid="bib11" class=" bibr popnode">David et al., 2010). Overall, it is imperative to know the causes and consequences of wild-type RBP aggregation during aging in order to fully understand RBP aggregation in neurodegenerative diseases. Furthermore, it is likely that the organism has evolved specific mechanisms to control liquid droplet protein aggregation.In the current study, we chose to focus on key RBPs responsible for stress granule formation. Stress granules are a specific type of RNA granule that protect the cell by sequestering mRNA from the translational machinery during periods of stress. Importantly, stress granule proteins are often found to co-localize with pathological inclusions of TDP-43 and FUS (href="#bib7" rid="bib7" class=" bibr popnode">Bentmann et al., 2013, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2013). Whether these stress granule proteins are innocent bystanders transiently interacting with TDP-43 and FUS or whether they co-aggregate and accelerate disease-associated RBP aggregation remains intensely debated (href="#bib7" rid="bib7" class=" bibr popnode">Bentmann et al., 2013, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2013).We show that key stress-granule-related RBPs (sgRBPs) accumulate in aberrant stress granule-like puncta and in large solid aggregates in aged C. elegans. Proteomic analysis revealed that long-lived animals with reduced daf-2 signaling preferentially abrogate the insolubility of RNA granule components. Importantly, sgRBP aggregates are associated with reduced animal size, motility, and lifespan. We show that sgRBP aggregation is triggered at an earlier age by their co-aggregation with other misfolded proteins, a process that is prevented by DAF-16 in daf-2 mutants. In addition, the proteostasis network established by heat shock transcription factor 1 (HSF-1) during development is required to maintain dynamic stress granule proteins throughout the animal’s life.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介年轻,健康的生物体通过严格控制蛋白质组,努力将其蛋白质组维持在功能状态蛋白质合成,折叠和降解的速率。在整个细胞内建立了广泛的质量控制系统,以防止和管理蛋白质损伤。随着生物的衰老,这些控制机制的效率降低,从而导致蛋白质体内平衡的破坏。衰老是各种神经退行性疾病的主要危险因素,其中特定的蛋白质以病理聚集的形式积累。近来,在没有疾病的情况下研究广泛的蛋白质聚集引起了相当大的兴趣。多项研究表明,成百上千的蛋白质在老年动物中变得高度不溶于去污剂。对不溶性蛋白质组的计算分析表明,具有功能和结构相似性的蛋白质过多()。对体内某些蛋白质的检查显示它们组装成大的“固体”聚集体,其年龄与疾病背景下形成的聚集体相似。在模型生物中发现内源性年龄相关蛋白聚集为我们提供了前所未有的机会来解剖负责防止蛋白聚集的内在细胞机制,而无需使用异位表达的人类疾病相关蛋白。此时,关于广泛的蛋白质不溶性随年龄的增长及其对生物健康的影响的调控知之甚少。有趣的是,一些研究表明,长寿动物体内的蛋白质不溶性得到了改善,胰岛素/胰岛素生长因子(IGF)-1 daf-2信号降低,但尚不清楚在哪个程度上(``,'')。神经退行性疾病的零星形式显示出由RNA结合蛋白(RBP)异常聚集引起的病理包涵体。在这些包涵物中鉴定出的第一个RBP是TAR DNA结合蛋白43kDa(TDP-43),融合在肉瘤(FUS)中,与肌萎缩性侧索硬化症(ALS)和额颞叶变性(FTLD)相关(,,href = “#bib35” rid =“ bib35” class =“ bibr popnode”> Neumann等人,2006 )。从那时起,其他RBP,例如TAF15,EWSR1,hnRNPA2B1,hnRNPA1和hnRNPA3与神经退行性疾病相关(href="#bib23" rid="bib23" class=" bibr popnode"> Kim等人,2013 < / a>,href="#bib37" rid="bib37" class=" bibr popnode"> Neumann等人,2011 )。与痴呆症相关的所有已知RBP都包含一个富含甘氨酸和不带电荷的极性氨基酸的低复杂度(LC)“ pr病毒样”结构域,类似于驱动酵母病毒聚集的序列(href =“#bib1” =“ bib1” class =“ bibr popnode”>阿尔贝蒂等人,2009 ,href="#bib25" rid="bib25" class=" bibr popnode">国王等人,2012 )。此域中的突变通过加速聚集来增强病理学(href="#bib19" rid="bib19" class=" bibr popnode"> Johnson等,2009 ,href =“#bib23” rid =“ bib23” class =“ bibr popnode”> Kim等人,2013 )。 LC ion病毒样结构域也存在于关键RBP中,这些RBP通过液-液相分离来介导RNA颗粒的组装(href="#bib30" rid="bib30" class=" bibr popnode"> Lin等人, 2015 ,href="#bib31" rid="bib31" class=" bibr popnode"> Molliex等人,2015 ,href =“#bib34” rid =“ bib34” class =“ bibr popnode”>村上等人,2015 ,href="#bib39" rid="bib39" class=" bibr popnode"> Patel等人,2015 )。值得注意的是,随着时间的流逝,RBP产生的一小部分液滴会在体外转化为固体聚集体(href="#bib30" rid="bib30" class=" bibr popnode"> Lin等人,2015 ,href="#bib31" rid="bib31" class=" bibr popnode"> Molliex等人,2015 ,href =“#bib34” rid =“ bib34” class =“ bibr popnode “> Murakami等,2015 ,href="#bib39" rid="bib39" class=" bibr popnode"> Patel等,2015 )。为了清楚起见,我们仅在涉及非动态RBP聚合的形成时才使用术语聚合。一个重要的问题是,RBPs的特殊装配特性是否会使它们在多细胞生物体的衰老过程中而不仅仅是在疾病环境中处于聚集的风险。有趣的是,在老年动物的不溶蛋白质组中鉴定出几种具有LC pr病毒样结构域的RBP(href="#bib11" rid="bib11" class=" bibr popnode"> David et al。,2010 )。总体因此,必须全面了解衰老过程中野生型RBP聚集的原因和后果,以便全面了解神经退行性疾病中的RBP聚集。此外,该生物体可能已经进化出控制液滴蛋白质聚集的特定机制。在当前研究中,我们选择关注于负责应激颗粒形成的关键RBP。应激颗粒是一种特定类型的RNA颗粒,可通过在应激期间从翻译机制中隔离mRNA来保护细胞。重要的是,经常发现应激颗粒蛋白与TDP-43和FUS的病理包裹体共定位(href="#bib7" rid="bib7" class=" bibr popnode"> Bentmann等人,2013 ,href="#bib28" rid="bib28" class=" bibr popnode"> Li等人,2013 )。这些应激颗粒蛋白是否是与TDP-43和FUS瞬时相互作用的无辜旁观者,还是它们是否共同聚集并加速疾病相关的RBP聚集仍在激烈争论(href =“#bib7” rid =“ bib7” class =“ bibr popnode“> Bentmann等人,2013 ,href="#bib28" rid="bib28" class=" bibr popnode"> Li等人,2013 )。我们显示了该密钥应力颗粒相关的RBP(sgRBP)积累在年龄不大的秀丽线虫中异常的应力颗粒状点状和大型固体聚集物中。蛋白质组学分析表明,具有降低的daf-2信号的长寿命动物优先消除RNA颗粒成分的不溶性。重要的是,sgRBP聚集体与减小的动物大小,运动性和寿命相关。我们显示sgRBP聚集在更早的年龄被它们与其他错折叠蛋白的共同聚集触发,这一过程被daf-2突变体中的DAF-16阻止。此外,在发育过程中需要由热激转录因子1(HSF-1)建立的蛋白质稳定网络来维持动物整个生命过程中的动态应激颗粒蛋白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号