class='head no_bottom_margin' id='sec1title'>Int'/> A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development
【2h】

A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development

机译:基因调控网络平衡脊椎动物躯干发育过程中的神经和中胚层规格。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCell fate decisions in developing tissues are made by gene regulatory networks comprising transcription factors and intercellular signals. These networks determine the rate of self-renewal and differentiation to ensure the balanced generation of different cell types and the production of well-proportioned tissues (, ). The formation of the vertebrate trunk, which extends progressively during embryogenesis, is one example. Successively more posterior neural and paraxial presomitic mesodermal (PSM) cells of the trunk are generated from a bipotential population of cells (), termed neuromesodermal progenitors (NMPs) at the posterior end of the embryo. Proliferation of NMPs fuels the elongation of axial tissues (, , , , , ). Hence, the rate at which NMPs are generated, self-renew, and differentiate must be carefully regulated in order to balance the production of different trunk tissues and to prevent the premature or delayed depletion of NMPs that will affect the length of the embryo.NMPs reside in the node-streak border (NSB), caudal lateral epiblast (CLE) and the chordoneural hinge (CNH) of elongating embryos (, , , , ). These regions express Wnt and FGF ligands (). Interfering with either signal results in the depletion of NMPs and the premature truncation of the body axis (href="#bib86" rid="bib86" class=" bibr popnode">Takada et al., 1994, href="#bib101" rid="bib101" class=" bibr popnode">Wilson et al., 2009, href="#bib108" rid="bib108" class=" bibr popnode">Yoshikawa et al., 1997, href="#bib97" rid="bib97" class=" bibr popnode">van de Ven et al., 2011). Both Wnt and FGF signaling are implicated in posteriorizing cells by inducing the Cdx transcription factors (TFs) that promote the expression of more posterior Hox genes (href="#bib98" rid="bib98" class=" bibr popnode">van den Akker et al., 2002, href="#bib63" rid="bib63" class=" bibr popnode">Nordstrom et al., 2006, href="#bib97" rid="bib97" class=" bibr popnode">van de Ven et al., 2011, href="#bib55" rid="bib55" class=" bibr popnode">Mazzoni et al., 2013, href="#bib59" rid="bib59" class=" bibr popnode">Neijts et al., 2016, href="#bib4" rid="bib4" class=" bibr popnode">Amin et al., 2016). Moreover, Wnt signaling is required for the differentiation of NMPs to mesodermal tissue (href="#bib53" rid="bib53" class=" bibr popnode">Martin and Kimelman, 2012, href="#bib29" rid="bib29" class=" bibr popnode">Garriock et al., 2015) and the loss of Wnt3a results in a depletion of mesodermal tissue in both mice and zebrafish (href="#bib108" rid="bib108" class=" bibr popnode">Yoshikawa et al., 1997, href="#bib51" rid="bib51" class=" bibr popnode">Martin and Kimelman, 2008, href="#bib29" rid="bib29" class=" bibr popnode">Garriock et al., 2015).Primitive streak and node cells transiently express the retinoic acid (RA)-synthesizing enzyme Aldh1a2 (href="#bib71" rid="bib71" class=" bibr popnode">Ribes et al., 2009). Mouse embryos lacking Aldh1a2 are truncated, suggesting a role for RA in axis elongation (href="#bib62" rid="bib62" class=" bibr popnode">Niederreither et al., 1999, href="#bib17" rid="bib17" class=" bibr popnode">Cunningham et al., 2015, href="#bib60" rid="bib60" class=" bibr popnode">Niederreither and Dolle, 2008, href="#bib25" rid="bib25" class=" bibr popnode">Duester, 2008) nevertheless, the role of RA in the establishment of NMPs remains unclear. At later stages of development, RA emanating from Aldh1a2-expressing somitic cells promotes the expression of genes characteristic of neural progenitors in the spinal cord. In addition, RA inhibits expression of both Wnt3a and Fgf8, and exposure of the tail region to increased concentrations of RA can arrest axis elongation (href="#bib65" rid="bib65" class=" bibr popnode">Olivera-Martinez et al., 2012). Excess RA concentration in the tail bud is prevented by the RA-metabolizing enzyme Cyp26a1, which is induced by Cdx genes and T/Brachyury under the control of Wnt/Fgf signaling (href="#bib52" rid="bib52" class=" bibr popnode">Martin and Kimelman, 2010, href="#bib100" rid="bib100" class=" bibr popnode">Vidigal et al., 2010, href="#bib75" rid="bib75" class=" bibr popnode">Savory et al., 2009, href="#bib109" rid="bib109" class=" bibr popnode">Young et al., 2009, href="#bib99" rid="bib99" class=" bibr popnode">van Rooijen et al., 2012). However, the overlapping functions and proximity of events hindered assigning direct and indirect activities to individual signaling pathways (href="#bib41" rid="bib41" class=" bibr popnode">Kimelman, 2016, href="#bib33" rid="bib33" class=" bibr popnode">Henrique et al., 2015, href="#bib31" rid="bib31" class=" bibr popnode">Gouti et al., 2015, href="#bib58" rid="bib58" class=" bibr popnode">Neijts et al., 2014).The co-expression of the TFs T/Brachyury (T/Bra) and Sox2 is characteristic of NMPs (href="#bib65" rid="bib65" class=" bibr popnode">Olivera-Martinez et al., 2012, href="#bib30" rid="bib30" class=" bibr popnode">Gouti et al., 2014, href="#bib94" rid="bib94" class=" bibr popnode">Tsakiridis et al., 2015, href="#bib102" rid="bib102" class=" bibr popnode">Wymeersch et al., 2016). Both Wnt and FGF signaling have been implicated as inducers of T/Bra in NMPs (href="#bib104" rid="bib104" class=" bibr popnode">Yamaguchi et al., 1999, href="#bib51" rid="bib51" class=" bibr popnode">Martin and Kimelman, 2008). Moreover, Cdx-binding regions have been found upstream of the T/Bra gene (href="#bib75" rid="bib75" class=" bibr popnode">Savory et al., 2009). This and subsequent analysis (href="#bib99" rid="bib99" class=" bibr popnode">van Rooijen et al., 2012) has led to the suggestion that Cdx proteins, induced by Wnt signaling, maintain T/Bra expression in NMPs, but are dispensable for its initial induction. However, Cdx proteins also appear to regulate Wnt and FGF expression in NMPs (href="#bib109" rid="bib109" class=" bibr popnode">Young et al., 2009, href="#bib75" rid="bib75" class=" bibr popnode">Savory et al., 2009, href="#bib99" rid="bib99" class=" bibr popnode">van Rooijen et al., 2012), thus the loss of T/Bra expression in the absence of Cdx might be due to the loss of these signals and the depletion of NMPs.Neural cells differentiating from NMPs downregulate T/Bra but maintain Sox2 expression (href="#bib30" rid="bib30" class=" bibr popnode">Gouti et al., 2014, href="#bib31" rid="bib31" class=" bibr popnode">Gouti et al., 2015, href="#bib92" rid="bib92" class=" bibr popnode">Tsakiridis and Wilson, 2015, href="#bib31" rid="bib31" class=" bibr popnode">Gouti et al., 2015). By contrast, as NMPs differentiate into mesoderm, expression of Sox2 is downregulated and Msgn1 and Tbx6 are upregulated to form nascent mesodermal progenitor cells (MPCs) (href="#bib13" rid="bib13" class=" bibr popnode">Chalamalasetty et al., 2011). Then, as cells commit to a PSM identity, expression of T/Bra is downregulated. In embryos lacking T/Bra, mesoderm induction fails and axis elongation halts (href="#bib34" rid="bib34" class=" bibr popnode">Herrmann et al., 1990). This is, at least in part, explained by a requirement for T/Bra for the induction of Msgn1 and Tbx6 (href="#bib104" rid="bib104" class=" bibr popnode">Yamaguchi et al., 1999, href="#bib103" rid="bib103" class=" bibr popnode">Yabe and Takada, 2012). Moreover, the loss of PSM tissue in the absence of Tbx6 or Msgn1 is accompanied by ectopic generation of neural tissue (href="#bib16" rid="bib16" class=" bibr popnode">Chapman and Papaioannou, 1998, href="#bib107" rid="bib107" class=" bibr popnode">Yoon et al., 2000, href="#bib14" rid="bib14" class=" bibr popnode">Chalamalasetty et al., 2014), raising the question of the role that the induction of these TFs plays in balancing neural and mesodermal production from NMPs.Taken together, the data suggest complex regulatory mechanisms with multiple interactions and feedbacks. It has proven challenging, however, to assemble a definitive network that explains the generation of NMPs and their balanced allocation toward mesodermal and neural tissue. These difficulties arise from the necessity of analyzing in vivo experimental perturbations in which axis elongation fails or the expression of signals is lost. To circumvent this, we have taken advantage of the in vitro directed differentiation that we and others have recently developed to generate NMPs from pluripotent stem cells (href="#bib30" rid="bib30" class=" bibr popnode">Gouti et al., 2014, href="#bib94" rid="bib94" class=" bibr popnode">Tsakiridis et al., 2015, href="#bib95" rid="bib95" class=" bibr popnode">Turner et al., 2014, href="#bib47" rid="bib47" class=" bibr popnode">Lippmann et al., 2015). This system decouples the development of NMPs and trunk cell types from the specific tissue architecture associated with axis elongation, thereby avoiding the difficulty of interpreting data from chimeric or morphologically abnormal embryos. Furthermore, it allows exogenous control of the supply and timing of signaling molecules. Thus, aspects of the gene regulatory network that are tightly linked in vivo can be separated and assayed in vitro.Using single-cell transcriptome analysis we first established the similarity between in vivo and in vitro derived NMPs. We then reverse engineered the transcriptional network responsible for NMP induction and differentiation. This revealed a network comprising the TFs Cdx1, 2, 4, T/Bra, Sox2, Msgn1, and Tbx6, which integrate Wnt and RA signaling to regulate entry to and exit from the NMP state. Mutation of individual or multiple components validated the network. Within the network, RA plays dual roles. Initially, RA is required for the expression of Sox2 and generation of NMPs; later, increased levels of RA drive neural differentiation. Cdx genes not only posteriorize cells but also, by restraining RA signaling, maintain T/Bra expression to allow mesoderm induction. Msgn1 and Tbx6 control the timing and outcome of NMP differentiation by cell-autonomously repressing T/Bra and Sox2 to propel mesoderm differentiation and by inducing the RA-producing enzyme Aldh1a2. The latter increases RA levels to non-autonomously promote neural differentiation and thereby provides regulative feedback that balances neural and mesoderm production. A dynamic model capturing these interactions demonstrates how the network coordinates the generation of the two cell types from the bipotential progenitor and ensures the well-proportioned generation of tissues necessary to build the vertebrate trunk.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介发育中组织中的细胞命运决定是由包含转录因子和细胞间信号的基因调控网络做出的。这些网络决定了自我更新和分化的速度,以确保不同细胞类型的均衡生成以及组织匀称的组织的产生(,)。一个例子是脊椎动物主干的形成,它在胚胎发生过程中逐渐延伸。树干的后继神经和旁轴前中胚层(PSM)细胞由胚胎后端的双能细胞群(称为神经中胚层祖细胞(NMPs))产生。 NMP的增殖促进了轴向组织(“,,,,,)的伸长。因此,必须仔细调节NMP的产生,自我更新和分化的速率,以平衡不同躯干组织的产生并防止NMP的过早或延迟耗竭而影响胚胎的长度。驻留在结节条纹边界(NSB),尾外侧上皮细胞(CLE)和伸长的胚胎(,,,,)的弦神经铰链(CNH)中。这些区域表达Wnt和FGF配体。干扰任何一种信号都会导致NMP的消耗和身体轴的过早截断(href="#bib86" rid="bib86" class=" bibr popnode"> Takada等,1994 , href="#bib101" rid="bib101" class=" bibr popnode">威尔逊等人,2009 ,href =“#bib108” rid =“ bib108” class =“ bibr popnode” > Yoshikawa等,1997 ,href="#bib97" rid="bib97" class=" bibr popnode"> van de Ven等,2011 )。通过诱导Cdx转录因子(TFs)促进更多后部Hox基因的表达,Wnt和FGF信号均与后验细胞有关(href="#bib98" rid="bib98" class=" bibr popnode"> van den Akker et al。,2002 ,href="#bib63" rid="bib63" class=" bibr popnode"> Nordstrom et al。,2006 ,href =“#bib97 “ rid =” bib97“ class =” bibr popnode“>范德文等人,2011 ,href="#bib55" rid="bib55" class=" bibr popnode"> Mazzoni等。 ,2013 ,href="#bib59" rid="bib59" class=" bibr popnode"> Neijts et al。,2016 ,href =“#bib4” rid =“ bib4 “ class =” bibr popnode“> Amin等人,2016 )。此外,Wnt信号传导是NMP分化为中胚层组织所必需的(href="#bib53" rid="bib53" class=" bibr popnode"> Martin and Kimelman,2012 ,href =“ #bib29“ rid =” bib29“ class =” bibr popnode“> Garriock等人,2015 ),Wnt3a的缺失会导致小鼠和斑马鱼中皮组织的消耗(href =”# bib108“ rid =” bib108“ class =” bibr popnode“>吉川等人,1997 ,href="#bib51" rid="bib51" class=" bibr popnode"> Martin and Kimelman,2008年,href="#bib29" rid="bib29" class=" bibr popnode"> Garriock等人,2015 )。原始条纹和结点细胞瞬时表达维甲酸(RA) -合成酶Aldh1a2(href="#bib71" rid="bib71" class=" bibr popnode"> Ribes et al。,2009 )。缺少Aldh1a2的小鼠胚胎被截短,表明RA在轴伸长中起作用(href="#bib62" rid="bib62" class=" bibr popnode"> Niederruth et al。,1999 ,href =“#bib17” rid =“ bib17” class =“ bibr popnode”>坎宁安等人,2015 ,href="#bib60" rid="bib60" class=" bibr popnode">尼德雷尔和然而,Dolle,2008 ,href="#bib25" rid="bib25" class=" bibr popnode"> Duester,2008 )中,RA在建立NMP中的作用仍然不清楚。在发育的后期,从表达Aldh1a2的体细胞发出的RA促进了脊髓中神经祖细胞特有基因的表达。此外,RA抑制Wnt3a和Fgf8的表达,并且尾巴区域暴露于浓度升高的RA中可阻止轴伸长(href="#bib65" rid="bib65" class=" bibr popnode"> Olivera- Martinez等人,2012 )。在Wnt / Fgf信号的控制下,由Cdx基因和T / Brachyury诱导的RA代谢酶Cyp26a1防止了尾芽中过多的RA浓度(href =“#bib52” rid =“ bib52”类=“ bibr popnode”> Martin和Kimelman,2010 ,href="#bib100" rid="bib100" class=" bibr popnode"> Vidigal等,2010 ,href =“#bib75” rid =“ bib75” class =“ bibr popnode”> Savory et al。,2009 ,href="#bib109" rid="bib109" class=" bibr popnode">年轻等等,2009 ,href="#bib99" rid="bib99" class=" bibr popnode"> van Rooijen等人,2012 )。然而,事件的重叠功能和邻近性阻碍了将直接和间接活动分配给各个信号传导途径(href="#bib41" rid="bib41" class=" bibr popnode"> Kimelman,2016 ,href =“#bib33” rid =“ bib33” class =“ bibr popnode”> Henrique et al。,2015 ,href="#bib31" rid="bib31" class=" bibr popnode">古蒂等等,2015 ,href="#bib58" rid="bib58" class=" bibr popnode"> Neijts等人,2014 )。TF的共表达T / Brachyury(T / Bra)和Sox2是NMP的特征(href="#bib65" rid="bib65" class=" bibr popnode"> Olivera-Martinez et al。,2012 ,href = “#bib30” rid =“ bib30” class =“ bibr popnode”>古蒂等人,2014 ,href="#bib94" rid="bib94" class=" bibr popnode"> Tsakiridis等。,2015 ,href="#bib102" rid="bib102" class=" bibr popnode"> Wymeersch et al。,2016 )。 Wnt和FGF信号均与NMP中T / Bra的诱导有关(href="#bib104" rid="bib104" class=" bibr popnode"> Yamaguchi et al。,1999 ,href =“#bib51” rid =“ bib51” class =“ bibr popnode”> Martin和Kimelman,2008 )。而且,在T / Bra基因的上游发现了Cdx结合区(href="#bib75" rid="bib75" class=" bibr popnode"> Savory et al。,2009 )。这项分析和随后的分析(href="#bib99" rid="bib99" class=" bibr popnode"> van Rooijen et al。,2012 )提示由Wnt信号诱导的Cdx蛋白,维持NMPs中的T / Bra表达,但是对于其初始诱导是必不可少的。但是,Cdx蛋白似乎也调节NMP中的Wnt和FGF表达(href="#bib109" rid="bib109" class=" bibr popnode"> Young等,2009 ,href = “#bib75” rid =“ bib75” class =“ bibr popnode”> Savory et al。,2009 ,href="#bib99" rid="bib99" class=" bibr popnode"> van Rooijen等等人,2012 ),因此在缺少Cdx的情况下T / Bra表达的丧失可能是由于这些信号的丢失和NMP的消耗所致。与NMP分化的神经细胞下调了T / Bra并维持了Sox2表达式(href="#bib30" rid="bib30" class=" bibr popnode">古蒂等人,2014 ,href =“#bib31” rid =“ bib31” class =“ bibr popnode“> Gouti等人,2015 ,href="#bib92" rid="bib92" class=" bibr popnode"> Tsakiridis and Wilson,2015 ,href =”# bib31“ rid =” bib31“ class =” bibr popnode“>古蒂等人,2015 )。相反,随着NMP分化为中胚层,Sox2的表达下调,Msgn1和 Tbx6 上调形成新生的中胚层祖细胞(MPC)(href =“#bib13” rid =“ bib13” class =“ bibr popnode”> Chalamalasetty等,2011 )。然后,由于细胞具有PSM身份, T / Bra 的表达下调。在缺乏 T / Bra 的胚胎中,中胚层诱导失败并且轴伸长停止(href="#bib34" rid="bib34" class=" bibr popnode"> Herrmann et al。,1990 )。至少部分地由 T / Bra 诱导 Msgn1 Tbx6 (href =“ #bib104“ rid =” bib104“ class =” bibr popnode“>山口等,1999 ,href="#bib103" rid="bib103" class=" bibr popnode"> Yabe和Takada, 2012 )。此外,在缺少 Tbx6 Msgn1 的情况下,PSM组织的丢失伴随着神经组织异位生成(href =“#bib16” rid =“ bib16” class =“ bibr popnode”>查普曼和帕帕约阿努(Chapman and Papaioannou),1998 ,href="#bib107" rid="bib107" class=" bibr popnode"> Yoon等,2000 ,href =“#bib14” rid =“ bib14” class =“ bibr popnode”> Chalamalasetty等,2014 ),这引发了以下问题:这些TF的诱导在平衡神经和中胚层生产中的作用NMPs。综合起来,数据表明复杂的监管机制具有多种相互作用和反馈。然而,事实证明,组建一个明确的网络来解释NMP的产生及其在中胚层和神经组织中的平衡分配是具有挑战性的。这些困难源于需要在体内实验扰动中进行分析的必要性,其中轴延伸失败或信号表达丢失。为了避免这种情况,我们利用了我们和其他人最近开发的体外定向分化技术,可以从多能干细胞生成NMP(href="#bib30" rid="bib30" class=" bibr popnode"> Gouti et al。,2014 ,href="#bib94" rid="bib94" class=" bibr popnode"> Tsakiridis et al。,2015 ,href =“#bib95” rid =“ bib95” class =“ bibr popnode”>特纳等人,2014 ,href="#bib47" rid="bib47" class=" bibr popnode">利普曼等人,2015 )。该系统将NMP和干细胞类型的发展与与轴伸长相关的特定组织结构分离开来,从而避免了解释来自嵌合或形态异常胚胎的数据的困难。此外,它允许对信号分子的供应和时间进行外源控制。因此,可以将离体紧密连接的基因调控网络的各个方面分离并在体外进行分析。使用单细胞转录组分析,我们首先确定了离体和离体NMP之间的相似性。然后,我们对负责NMP诱导和分化的转录网络进行了反向工程。这揭示了一个包含TFs Cdx1、2、4 T / Bra Sox2 Msgn1 Tbx6 ,它集成了Wnt和RA信令,可调节进入和退出NMP状态。单个或多个组件的变异验证了网络。在网络中,RA扮演着双重角色。最初,RA是 Sox2 的表达和NMP生成的必需条件。后来,RA水平升高会驱动神经分化。 Cdx 基因不仅使细胞后代化,而且还通过抑制RA信号传导而维持 T / Bra 表达,以诱导中胚层。 Msgn1 Tbx6 通过细胞自动抑制T / Bra Sox2 来控制NMP分化的时间和结果。通过诱导产生RA的酶 Aldh1a2 来促进中胚层的分化。后者会增加RA水平,从而非自主地促进神经分化,从而提供平衡神经和中胚层生产的调节性反馈。捕获这些相互作用的动力学模型证明了网络如何协调双电势祖细胞产生的两种细胞类型并确保构建脊椎动物树干所需组织的匀称生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号