首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated
【2h】

Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated

机译:Cryo-EM揭示了人类细胞质动力蛋白如何被自动抑制和激活

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCytoplasmic dynein-1 (dynein) associates with dynactin to form an efficient microtubule motor that transports cargo to the minus end of microtubules and organizes the internal components of eukaryotic cells. Disruption of this 2.4-megadalton machine disperses the Golgi network (), blocks transport between organelles (), and leaves viruses stuck at the cell periphery (). In addition, dynein and dynactin are required during cell division for spindle formation and correct chromosome alignment (). Dynein must therefore be carefully regulated to ensure the correct timing and location of motor activation.In cells, most dynein is diffuse in the cytoplasm, with only a small fraction on microtubules (). This prevents dynein from inappropriately saturating microtubules or traveling unnecessarily and ensures there is a pool of dynein ready to transport cargos when required. The switch of dynein and dynactin from diffuse to actively transporting cargo is controlled at many levels. It can be driven both in vitro () and in vivo () by clustering motors and influenced by targeting dynein/dynactin to specific post-translationally modified microtubules (, ) or the microtubule plus ends (, ). The switch is also controlled at the level of the dynein/dynactin machinery itself. Whereas isolated human dynein is weakly processive in vitro (), it can be activated to move over long distances (>500 nm) by binding to dynactin and a cargo-specific adaptor protein such as BICD2 (, ) or Hook3 (, href="#bib31" rid="bib31" class=" bibr popnode">Olenick et al., 2016, href="#bib43" rid="bib43" class=" bibr popnode">Schroeder and Vale, 2016). This binding stimulates processive movement by increasing the run length, velocity (href="#bib26" rid="bib26" class=" bibr popnode">McKenney et al., 2014, href="#bib41" rid="bib41" class=" bibr popnode">Schlager et al., 2014), and force output (href="#bib3" rid="bib3" class=" bibr popnode">Belyy et al., 2016) of individual motors.Dynein consists of two motor domains that are responsible for ATP hydrolysis and force production and a tail region that holds them together. It is unclear why dynein is only weakly processive on its own and how it is activated by dynactin and cargo adaptors. There is some evidence that dynein processivity is directly inhibited by the C-terminal ∼300 amino acids of the motor domain (href="#bib29" rid="bib29" class=" bibr popnode">Nicholas et al., 2015). Another theory is that inhibition is due to the tail region folding back to contact the motor domains until cargo binds (href="#bib3" rid="bib3" class=" bibr popnode">Belyy et al., 2016, href="#bib25" rid="bib25" class=" bibr popnode">Markus et al., 2009). A similar inhibition mechanism is used by cytoskeletal motors in the kinesin (href="#bib18" rid="bib18" class=" bibr popnode">Kaan et al., 2011) and myosin families (href="#bib14" rid="bib14" class=" bibr popnode">Hammer and Sellers, 2011). Alternatively, it has been proposed that dynein is auto-inhibited by self-dimerization of its motor domains (href="#bib51" rid="bib51" class=" bibr popnode">Torisawa et al., 2014). This form of dynein is referred to as the phi-particle because of its resemblance to the Greek letter phi (φ) (href="#bib1" rid="bib1" class=" bibr popnode">Amos, 1989). Activation was suggested to result from a shift in the equilibrium of dynein conformations toward an open form in which the motor domains are separated. In support of this, forced separation of isolated dynein motor domains can increase motor activity (href="#bib51" rid="bib51" class=" bibr popnode">Torisawa et al., 2014). However, these studies were performed on artificially dimerized dynein motors lacking the tail region. It is therefore not clear whether the tail contributes to inhibition or what role the phi-particle plays in the context of the whole dynein complex.In this study, we set out to determine whether the phi-particle contributes to dynein auto-inhibition and how dynein is activated by dynactin. We use cryoelectron microscopy (cryo-EM) to determine the structure of the phi-particle. We show how the motor domains self-dimerize and are locked in a conformation with weak affinity for microtubules. Disrupting the motor dimer by structure-based mutagenesis drives dynein into an open form with increased affinity for microtubules and dynactin. Surprisingly, we discover that the open form of dynein is also inhibited. We use a combination of 2D analysis of EM images and a 3D cryo-EM structure of the whole dynein/dynactin machinery to explain how dynactin overcomes this inhibition and directly reorients the motor domains to make dynein processive. Finally, we show that disrupting the phi-particle in cells causes mis-localization and mitotic defects, supporting a physiological role for the phi-particle in dynein regulation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介细胞质Dynein-1(dynein)与Dynactin结合形成一种有效的微管马达,该马达可进行运输运送至微管负端,并组织真核细胞的内部组件。这种2.4兆达尔顿机器的破坏分散了高尔基网络(),阻止了细胞器之间的运输(),并使病毒滞留在细胞外围()。此外,在细胞分裂过程中,为了形成纺锤体和正确的染色体对齐,需要动力蛋白和动力蛋白()。因此,必须对动力蛋白进行仔细的调节,以确保运动激活的正确时机和位置。在细胞中,大多数动力蛋白会扩散到细胞质中,只有一小部分在微管上。这样可以防止动力蛋白不适当地使微管饱和或行进,并确保有动力蛋白池准备在需要时运输货物。动力蛋白和动力蛋白从分散状态向主动运输状态的转换在许多层面上受到控制。它可以通过集群电机在体外(vitro)和体内(in vivo)驱动,并且可以通过将dynein / dynactin靶向特定的翻译后修饰微管(,)或微管加末端(,)来影响。该开关也被控制在动力蛋白/动力蛋白机械本身的水平上。分离的人达因在体外微弱地进行,但它可以通过与dynactin和特定于货物的衔接蛋白如BICD2(,)或Hook3(,href =“#bib31” rid =“ bib31” class =“ bibr popnode”>奥伦尼克等人,2016 ,href="#bib43" rid="bib43" class=" bibr popnode">施罗德和淡水河谷,2016 )。这种结合通过增加跑步长度和速度来刺激进行性运动(href="#bib26" rid="bib26" class=" bibr popnode"> McKenney et al。,2014 ,href =“# bib41“ rid =” bib41“ class =” bibr popnode“> Schlager等人,2014 ),并强制输出(href="#bib3" rid="bib3" class=" bibr popnode"> Belyy et al。,2016 ).Dynein由两个负责ATP水解和产生力的运动域和一个将它们保持在一起的尾部区域组成。尚不清楚为什么动力蛋白本身仅具有弱的合成能力,以及动力蛋白和货物衔接剂如何激活它。有证据表明,动力域的C端约300个氨基酸直接抑制了达力宁的合成能力(href="#bib29" rid="bib29" class=" bibr popnode"> Nicholas et al。,2015 )。另一个理论是抑制是由于尾部区域折回以接触运动区域直到货物结合(href="#bib3" rid="bib3" class=" bibr popnode"> Belyy等,2016 ,href="#bib25" rid="bib25" class=" bibr popnode">马库斯等人,2009 )。驱动蛋白(href="#bib18" rid="bib18" class=" bibr popnode"> Kaan等人,2011 )和肌球蛋白家族(href =“#bib14” rid =“ bib14” class =“ bibr popnode”>《锤子与卖方》,2011年)。另外,有人提出通过动力域的自我二聚作用来抑制动力蛋白(href="#bib51" rid="bib51" class=" bibr popnode"> Torisawa等人,2014 )。这种形式的达因因与希腊字母phi(φ)(href="#bib1" rid="bib1" class=" bibr popnode"> Amos,1989年)。有人认为激活是由于动力蛋白构象的平衡向着运动域被分开的开放形式的转移所致。为了支持这一点,强制分离孤立的动力蛋白域可以增加运动活性(href="#bib51" rid="bib51" class=" bibr popnode"> Torisawa et al。,2014 )。但是,这些研究是在缺少尾巴区域的人工二聚化的达因马达上进行的。因此,尚不清楚尾巴是否对抑制作用有帮助,或者phi颗粒在整个dynein复合物的背景下起什么作用。在这项研究中,我们着手确定phi颗粒是否对dynein的自动抑制有作用。动力蛋白被动力蛋白激活。我们使用低温电子显微镜(cryo-EM)来确定phi粒子的结构。我们展示了如何运动域自我二聚并锁定对微管的亲和力弱的构象。通过基于结构的诱变破坏马达二聚体,将动力蛋白转化为开放形式,从而增加了对微管和动力蛋白的亲和力。出奇,我们发现动力蛋白的开放形式也被抑制。我们结合使用EM图像的2D分析和整个dynein / dynactin机械的3D冷冻EM结构,来解释dynactin如何克服这种抑制作用并直接重新定向运动域以使dynein进行性处理。最后,我们表明破坏细胞中的phi粒子会导致错误定位和有丝分裂缺陷,支持phi粒子在动力蛋白调节中的生理作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号