首页> 美国卫生研究院文献>Elsevier Sponsored Documents >H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos
【2h】

H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos

机译:H3K4甲基化依赖体细胞记忆的记忆抑制核移植胚胎的重编程和发展。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDuring development, cells lose their pluripotent status and acquire a stable cell identity, which only rarely, if ever, changes to another kind. Yet, somatic cells can be reprogrammed to another cell fate by nuclear transfer (NT) to eggs (), by the expression of a combination of transcription factors () or by cell-cell fusion (). In these reprogramming procedures, the gene-expression pattern and epigenetic state characteristic of one differentiated cell identity is erased and the gene expression pattern specific to another cell type is established.However, the efficiency of complete reprogramming via NT is low, as less than 10% of NT embryos generated from differentiated cells reach adulthood (, ). This led to the hypothesis that differentiated cells acquire a resistance to reprogramming procedures, which during normal development, helps to stabilize their cell fate. Due to this resistance, eggs cannot fully reprogram the incoming somatic nuclei, so that embryos with aberrant gene expression patterns arise and normal embryonic development is not supported (, , ). So far, it has been shown that a failure in reactivating genes, e.g., the pluripotency gene Oct4, during nuclear reprogramming is indicative of a poor developmental outcome of NT embryos (). Furthermore, epigenetic modifications inhibiting the re-activation of genes during the reprogramming procedure have been investigated and their removal has been utilized to improve reprogramming efficiency and to increase the viability of NT embryos (, , , , , ). However, the expression of donor cell-type-specific genes in the wrong cell type of NT embryos could also lead to a severe disruption of normal gene expression patterns resulting in developmental defects and embryonic lethality. Indeed, the existence of such an active transcription state memory has been suggested in NT and induced pluripotent stem cell (iPSC) experiments (href="#bib30" rid="bib30" class=" bibr popnode">Polo et al., 2010, href="#bib18" rid="bib18" class=" bibr popnode">Kim et al., 2011, href="#bib28" rid="bib28" class=" bibr popnode">Ng and Gurdon, 2005). Currently, however, the extent and functional importance of persistent donor-cell-type-specific gene expression in resistance to reprogramming is not known. Furthermore, the epigenetic mechanisms that confer memory of an active state of gene expression and that maintain the differentiated state of cells during nuclear reprogramming and embryonic development remain elusive.Here we show that in Xenopus and human NT embryos, memory of an active transcriptional state (ON-memory) is a phenomenon as widespread as the memory of an inactive transcriptional state. ON-memory genes are associated with increased levels of the active histone mark H3K4me3 when compared to properly reprogrammed genes in Xenopus and human somatic donor cells. Importantly, while a reduction in H3K4 methylation levels has little effect on gene expression in the donor cells, it significantly improves transcriptional reprogramming and enhances the developmental potential of the resultant NT embryos in Xenopus. Our study thus identifies H3K4 methylation as a critical epigenetic barrier in NT-mediated reprogramming and implicates its role as stabilization mechanism of cell differentiation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介在开发过程中,细胞失去了多能状态并获得了稳定的细胞身份,这种情况很少发生,如果有的话,换成另一种。然而,可以通过核转移(NT)到卵中(NT),表达转录因子的组合()或通过细胞-细胞融合()将体细胞重编程为另一种细胞命运。在这些重编程过程中,一种分化细胞身份的基因表达模式和表观遗传状态特征被抹去,并且建立了另一种细胞类型特有的基因表达模式,但是通过NT进行完全重编程的效率很低,不到10由分化细胞产生的NT胚胎所占的百分比达到成年(,)。这导致了一个假设,即分化的细胞获得了对重编程程序的抵抗力,这在正常发育过程中有助于稳定其细胞命运。由于这种抗性,卵不能完全重新编程进入的体细胞核,从而出现具有异常基因表达模式的胚胎,并且不支持正常的胚胎发育(,,)。迄今为止,已经表明在核重编程期间重新激活基因例如多能性基因Oct4的失败表明NT胚胎发育不良。此外,已经研究了在重编程过程中抑制基因重新激活的表观遗传修饰,并已利用它们的去除来改善重编程效率并增加NT胚胎的生存力(“,”,“,”)。但是,供体细胞类型特异性基因在错误的NT胚胎细胞类型中的表达也可能导致正常基因表达模式的严重破坏,从而导致发育缺陷和胚胎致死率。确实,已经在NT和诱导性多能干细胞(iPSC)实验中暗示了这种活性转录状态记忆的存在(href="#bib30" rid="bib30" class=" bibr popnode"> Polo等。 ,2010 ,href="#bib18" rid="bib18" class=" bibr popnode">金等人,2011 ,href =“#bib28” rid =“ bib28 “ class =” bibr popnode“> Ng和Gurdon,2005 )。但是,目前尚不知道持久的供体细胞类型特异性基因表达在抗重编程中的程度和功能重要性。此外,在核重编程和胚胎发育过程中赋予基因表达活跃状态记忆并维持细胞分化状态的表观遗传机制仍然难以捉摸。在这里我们发现在非洲爪蟾和人类NT胚胎中,活跃转录状态的记忆(内存开启)是一种与非活跃转录状态记忆一样广泛的现象。与非洲爪蟾和人类体供体细胞中正确重新编程的基因相比,ON记忆基因与活性组蛋白标记H3K4me3的水平升高相关。重要的是,虽然H3K4甲基化水平的降低对供体细胞中的基因表达几乎没有影响,但它显着改善了转录重编程并增强了非洲爪蟾中最终NT胚胎的发育潜力。因此,我们的研究确定H3K4甲基化为NT介导的重编程中的关键表观遗传屏障,并暗示其作为细胞分化的稳定机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号