class='head no_bottom_margin' id='sec1title'>Int'/> Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation
【2h】

Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation

机译:巨噬细胞衍生的细胞外琥珀酸盐许可神经干细胞抑制慢性神经炎症。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAdvances in stem cell biology have raised hopes that diseases of the CNS may be ameliorated by non-hematopoietic stem cell medicines (). We have provided compelling evidence that the transplantation of somatic neural stem cells (NSCs) improves the clinico-pathological features of animal models of inflammatory CNS disorders. Beyond the structural replacement of injured CNS cells, our work has shown that transplanted NSCs engage in complex stem cell graft-to-host communication programs, overall leading to trophic support and modulation of adaptive and innate immune responses (, , , , ). Specifically, NSC transplants reduce the burden of inflammation at site of injury (, ), decrease the number of type 1 inflammatory mononuclear phagocytes (MPs) (), and promote the healing of the injured CNS via yet poorly characterized mechanisms.However, the clinical translation of experimental NSC therapies is still limited by the sources from which human NSCs (hNSCs) are derived (), the intrinsic immunogenicity of allogeneic hNSC lines (, ), and the stability of the so-called “intended clinical cell lot” (, ). Autologous and stably expandable directly induced NSCs (iNSCs) from patients’ dermal fibroblasts are emerging as a valid alternative to NSC therapies (, href="#bib28" rid="bib28" class=" bibr popnode">Meyer et al., 2015, href="#bib56" rid="bib56" class=" bibr popnode">Thier et al., 2012). The direct reprogramming into iNSCs avoids the laborious progression through a pluripotent state and subsequent differentiation into desired lineages described for induced pluripotent stem cell (iPSC) technology (href="#bib28" rid="bib28" class=" bibr popnode">Meyer et al., 2015, href="#bib56" rid="bib56" class=" bibr popnode">Thier et al., 2012). Therefore, making stably expandable iNSCs from somatic cells represents the most feasible way of obtaining autologous brain stem cells for downstream clinical applications (href="#bib62" rid="bib62" class=" bibr popnode">Wörsdörfer et al., 2013). However, the efficacy of directly reprogrammed iNSCs in treating inflammatory CNS disorders has not yet been tested.In progressive forms of multiple sclerosis (MS), chronic CNS inflammation is sustained by widespread activation of MPs that include both CNS resident microglia and monocyte-derived infiltrating macrophages (href="#bib22" rid="bib22" class=" bibr popnode">Mallucci et al., 2015). MPs are found in gray matter lesions, close to degenerating neurites and neuronal cell bodies (href="#bib37" rid="bib37" class=" bibr popnode">Peterson et al., 2001), and in white matter lesions, where the external rim of activated microglia is associated with chronic tissue damage (href="#bib6" rid="bib6" class=" bibr popnode">Bramow et al., 2010, href="#bib45" rid="bib45" class=" bibr popnode">Prineas et al., 2001). Areas of normal-appearing white matter are also characterized by MP accumulation, which leads to the formation of microglial nodules that drive disease pathology irrespective of concomitant T cell activation (href="#bib31" rid="bib31" class=" bibr popnode">Moll et al., 2011). The detrimental role of chronic MP-driven inflammation in progressive MS is also supported by evidence in animal disease models, where its overall burden correlates with impaired neuronal function (href="#bib38" rid="bib38" class=" bibr popnode">Planche et al., 2017), brain atrophy (href="#bib53" rid="bib53" class=" bibr popnode">Tambalo et al., 2015), and reduced regenerative responses (href="#bib15" rid="bib15" class=" bibr popnode">Jiang et al., 2014).Activation of MPs by pro-inflammatory stimuli causes a metabolic switch toward glycolysis and reduced oxidative phosphorylation (OXPHOS) (href="#bib16" rid="bib16" class=" bibr popnode">Kelly and O’Neill, 2015). Recent evidence suggests that, within this metabolic rewiring, type 1 inflammatory MPs accumulate succinate, with important pathophysiological implications (href="#bib54" rid="bib54" class=" bibr popnode">Tannahill et al., 2013). Intracellular succinate inhibits the activity of prolyl hydroxylases enzymes (PHDs), thereby stabilizing hypoxia responsive element (HIF)-1α and inducing the transcription of interleukin (IL)-1β (href="#bib54" rid="bib54" class=" bibr popnode">Tannahill et al., 2013). Furthermore, oxidation of succinate by succinate dehydrogenase (SDH) repurposes mitochondria from ATP synthesis to reactive oxygen species (ROS) production as additional pro-inflammatory signal (href="#bib30" rid="bib30" class=" bibr popnode">Mills et al., 2016). Type 1 inflammatory MPs also release succinate extracellularly and upregulate its cognate succinate receptor 1 (SUCNR1), a G-protein-coupled receptor (also known as GPR91), which functions as autocrine and paracrine sensor to enhance IL-1β production (href="#bib19" rid="bib19" class=" bibr popnode">Littlewood-Evans et al., 2016).As such, metabolism is emerging as an important therapeutic target to modulate the activation of both macrophages (href="#bib16" rid="bib16" class=" bibr popnode">Kelly and O’Neill, 2015) and microglia (href="#bib34" rid="bib34" class=" bibr popnode">Orihuela et al., 2016), and succinate-related pathways have key immune modulatory functions for acute and chronic inflammatory diseases (href="#bib50" rid="bib50" class=" bibr popnode">Ryu et al., 2003, href="#bib55" rid="bib55" class=" bibr popnode">Tannahill et al., 2015).Given the established immune modulatory properties of NSCs (href="#bib39" rid="bib39" class=" bibr popnode">Pluchino and Cossetti, 2013), we hypothesized that NSCs may exert their therapeutic effects in chronic neuroinflammation by modulating MP metabolism toward reduction of secondary CNS damage.In this work, we investigated the molecular mechanisms that underpin the capacity of somatic and directly induced NSCs to counteract the metabolic changes of type 1 inflammatory MPs both in vivo and in vitro. We show that transplanted iNSCs and NSCs are functionally equivalent in ameliorating chronic neuroinflammation in mice with experimental autoimmune encephalomyelitis (EAE). Transplanted iNSCs/NSCs switch in the activation profile of CNS-resident microglia and monocyte-derived infiltrating macrophages toward an anti-inflammatory phenotype, as well as reduce the levels of the immunometabolite succinate in the cerebrospinal fluid (CSF). iNSCs/NSCs also decrease extracellular succinate released by type 1 inflammatory MPs to reprogram their metabolism toward OXPHOS in vitro. Mechanistically, we show that succinate secreted by type 1 MPs elicits in iNSCs/NSCs a signaling cascade downstream SUCNR1, which enables their anti-inflammatory activity. This succinate-licensed anti-inflammatory function of iNSCs/NSCs is mediated by the secretion of prostaglandin (PG) E2, as well as by considerable scavenging of extracellular succinate. Loss of Sucnr1 function in NSCs leads to significantly reduced anti-inflammatory activities in vitro and in vivo after transplantation in EAE.Our study uncovers a succinate-SUCNR1 axis that clarifies how NSCs respond to inflammatory metabolic signals to inhibit the activation of type 1 MPs in chronic neuroinflammation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介干细胞生物学方面的进展引起了人们的希望,即非小细胞肺癌可以改善中枢神经系统疾病-造血干细胞药物()。我们提供了令人信服的证据,表明体神经干细胞(NSC)的移植改善了炎症性CNS疾病动物模型的临床病理特征。除了受损的CNS细胞的结构置换之外,我们的工作还表明,移植的NSC参与复杂的干细胞移植物至宿主的交流程序,总体上导致营养支持以及对适应性和先天性免疫应答的调节(“,,,”)。具体而言,NSC移植通过尚未充分鉴定的机制减轻了损伤部位的炎症负担(),减少了1型炎症性单核吞噬细胞(MPs)的数量,并促进了受损CNS的愈合。实验性NSC治疗方法的翻译仍然受到人类NSC(hNSC)来源(),同种异体hNSC系固有免疫原性(,)以及所谓的“预期临床细胞批次”的稳定性(, )。来自患者皮肤成纤维细胞的自体且稳定可扩展的直接诱导NSC(iNSC)逐渐成为NSC治疗的有效替代方法(,href="#bib28" rid="bib28" class=" bibr popnode"> Meyer等。 ,2015 ,href="#bib56" rid="bib56" class=" bibr popnode"> Thier等人,2012 )。直接重编程为iNSC避免了通过多能状态以及随后分化为所需多谱系的费力进展,该多能状态描述了诱导多能干细胞(iPSC)技术(href="#bib28" rid="bib28" class=" bibr popnode"> Meyer等人,2015 ,href="#bib56" rid="bib56" class=" bibr popnode"> Thier等人,2012 )。因此,从体细胞制备稳定可扩增的iNSCs是获得用于下游临床应用的自体脑干细胞的最可行方法(href="#bib62" rid="bib62" class=" bibr popnode">Wörsdörfer等, 2013 )。然而,尚未对直接重编程的iNSCs治疗炎性中枢神经系统疾病的功效进行测试。在进行性多发性硬化(MS)形式中,慢性中枢神经系统炎症通过MP的广泛活化而得以持续,MP包括中枢神经系统常驻小胶质细胞和单核细胞衍生的浸润。巨噬细胞(href="#bib22" rid="bib22" class=" bibr popnode"> Mallucci等人,2015 )。 MPs存在于灰质病灶中,接近于退化的神经突和神经元细胞体(href="#bib37" rid="bib37" class=" bibr popnode"> Peterson等,2001 ),并且在白质病变中,活化的小胶质细胞的外缘与慢性组织损伤有关(href="#bib6" rid="bib6" class=" bibr popnode"> Bramow等,2010 , href="#bib45" rid="bib45" class=" bibr popnode"> Prineas等,2001 )。正常出现的白质区域的特征还在于MP积聚,这导致形成小胶质瘤结节,无论是否伴随T细胞活化,小胶质结节都会驱动疾病病理(href =“#bib31” rid =“ bib31” class =“ bibr popnode“> Moll等人,2011 )。动物疾病模型中的证据也支持了慢性MP驱动的炎症在进行性MS中的有害作用,该疾病的总体负担与神经元功能受损有关(href =“#bib38” rid =“ bib38” class =“ bibr popnode “> Planche等人,2017 ),脑萎缩症(href="#bib53" rid="bib53" class=" bibr popnode"> Tambalo等人,2015 )和降低的再生反应(href="#bib15" rid="bib15" class=" bibr popnode"> Jiang et al。,2014 )。促炎性刺激激活MP会导致新陈代谢转向糖酵解并降低了氧化磷酸化(OXPHOS)(href="#bib16" rid="bib16" class=" bibr popnode"> Kelly和O'Neill,2015 )。最近的证据表明,在这种新陈代谢的转换过程中,1型炎症性MP会积聚琥珀酸,具有重要的病理生理意义(href="#bib54" rid="bib54" class=" bibr popnode"> Tannahill等人,2013,)。细胞内琥珀酸抑制脯氨酰羟化酶(PHD)的活性,从而稳定缺氧反应元件(HIF)-1α并诱导白介素(IL)-1β的转录(href =“#bib54” rid =“ bib54” class = “ bibr popnode”> Tannahill等人,2013 )。此外,琥珀酸脱氢酶(SDH)对琥珀酸的氧化作用将线粒体从ATP合成重新转化为活性氧(ROS)的产生,作为附加的促炎信号(href="#bib30" rid="bib30" class=" bibr popnode"> Mills等人,2016 )。 1型炎症性MP还会在细胞外释放琥珀酸盐并上调其相关的琥珀酸盐受体1(SUCNR1),这是一种G蛋白偶联受体(也称为GPR91),其作用为自分泌和旁分泌传感器,以增强IL-1β的产生(href =“#bib19” rid =“ bib19” class =“ bibr popnode”> Littlewood-Evans等,2016 )。因此,新陈代谢正在成为调节两个巨噬细胞活化的重要治疗靶点( href="#bib16" rid="bib16" class=" bibr popnode">凯利和奥尼尔,2015 )和小胶质细胞(href =“#bib34” rid =“ bib34” class = “ bibr popnode“> Orihuela等人,2016 ),琥珀酸相关的途径对急性和慢性炎性疾病具有关键的免疫调节功能(href =”#bib50“ rid =” bib50“ class =” bibr popnode“> Ryu等人,2003 ,href="#bib55" rid="bib55" class=" bibr popnode"> Tannahill等人,2015 )。 NSC的免疫调节特性(href =“#bib39” rid =“ bib39” class =“ bibr popnod e“> Pluchino和Cossetti,2013 ),我们假设NSC可能通过调节MP代谢以减轻继发中枢神经系统损害而发挥其在慢性神经炎症中的治疗作用。在这项工作中,我们研究了支持该功能的分子机制。体细胞和直接诱导的NSC在体内和体外抵消1型炎症性MP的代谢变化。我们显示,移植的iNSCs和NSCs在缓解实验性自身免疫性脑脊髓炎(EAE)小鼠的慢性神经发炎方面功能等效。移植的iNSCs / NSCs使CNS驻留的小胶质细胞和单核细胞浸润的巨噬细胞的激活模式朝着抗炎表型转变,并降低了脑脊液(CSF)中琥珀酸免疫代谢物的水平。 iNSCs / NSCs还可以减少1型炎症性MP释放的细胞外琥珀酸酯,从而在体外将其代谢重新编程为OXPHOS。从机制上讲,我们显示1型MP分泌的琥珀酸酯在iNSCs / NSCs中引起下游SUCNR1信号传导级联,从而使其具有抗炎活性。 iNSC / NSC的这种琥珀酸盐​​许可的抗炎功能是由前列腺素(PG)E2的分泌以及大量清除细胞外琥珀酸盐介导的。 NSCs中Sucnr1功能的丧失会导致EAE移植后体外和体内的抗炎活性大大降低。我们的研究发现了琥珀酸SUCNR1轴,阐明了NSCs如何响应炎性代谢信号以抑制1型MPs的激活。慢性神经炎症。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号