首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor
【2h】

Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor

机译:与GRL-0519抑制剂的野生型和HIV-1蛋白酶的四个突变的结合和耐药机制的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drug resistance of mutations in HIV-1 protease (PR) is the most severe challenge to the long-term efficacy of HIV-1 PR inhibitor in highly active antiretroviral therapy. To elucidate the molecular mechanism of drug resistance associated with mutations (D30N, I50V, I54M, and V82A) and inhibitor (GRL-0519) complexes, we have performed five molecular dynamics (MD) simulations and calculated the binding free energies using the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method. The ranking of calculated binding free energies is in accordance with the experimental data. The free energy spectra of each residue and inhibitor interaction for all complexes show a similar binding model. Analysis based on the MD trajectories and contribution of each residues show that groups R2 and R3 mainly contribute van der Waals energies, while groups R1 and R4 contribute electrostatic interaction by hydrogen bonds. The drug resistance of D30N can be attributed to the decline in binding affinity of residues 28 and 29. The size of Val50 is smaller than Ile50 causes the residue to move, especially in chain A. The stable hydrophobic core, including the side chain of Ile54 in the wild type (WT) complex, became unstable in I54M because the side chain of Met54 is flexible with two alternative conformations. The binding affinity of Ala82 in V82A decreases relative to Val82 in WT. The present study could provide important guidance for the design of a potent new drug resisting the mutation inhibitors.
机译:HIV-1蛋白酶(PR)突变的药物耐药性是HIV-1 PR抑制剂在高活性抗逆转录病毒治疗中的长期疗效的最严峻挑战。为了阐明与突变(D30N,I50V,I54M和V82A)和抑制剂(GRL-0519)复合物相关的耐药性的分子机制,我们进行了五次分子动力学(MD)模拟,并使用分子力学计算了结合自由能泊松-玻尔兹曼表面积(MM-PBSA)方法。计算的结合自由能的等级与实验数据一致。每个残基的自由能谱和所有配合物的抑制剂相互作用均显示出相似的结合模型。基于MD轨迹和每个残基的贡献的分析表明,基团R2和R3主要贡献范德华能量,而基团R1和R4通过氢键贡献静电相互作用。 D30N的耐药性可归因于残基28和29的结合亲和力下降。Val50的大小小于Ile50,导致残基移动,尤其是在链A中。稳定的疏水核心,包括Ile54的侧链在野生型(WT)复合物中,Met54的侧链具有两个可选构象,因此在I54M中变得不稳定。相对于WT中的Val82,Ala82在V82A中的结合亲和力降低。本研究可为设计一种有效的抗突变抑制剂的新药提供重要指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号