首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams
【2h】

Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

机译:差分偏振非线性光学显微镜与自适应光学控制多路复用光束

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
机译:差分偏振非线性光学显微镜有可能成为有序生物组装体和微晶聚集体结构研究中必不可少的工具。可以通过对非线性光学信号各向异性进行快速而灵敏的测量来探究其微观组织,这可以通过使用具有垂直偏振方向的时分多路脉冲激光束和用于信号多路分解的光子计数检测电子器件,以微观空间分辨率来实现。此外,可变形的膜镜可用于校正显微镜中的光学像差,同时使用遗传算法优化光束重叠。与衍射限制点扩散功能相比,可以实现更高的精度,从而可以在逐像素的基础上执行偏振分辨测量。我们描述了一种新开发的差分偏振显微镜,并介绍了差分显微镜技术在胶原和纤维素结构研究中的应用。在这些研究中,都使用了二次谐波的产生和荧光检测的非线性吸收各向异性。结果表明,可以推断出纤维在生物组织中的取向和结构特性,并且可以确定标记纤维的荧光分子(刚果红)的取向。微分偏振显微镜避免了常见的问题,例如光漂白和样品移动。由于数十兆赫兹的激发脉冲交替极化,可以方便地应用快速数据采集来测量动态变化的体内结构中非线性信号各向异性的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号