首页> 美国卫生研究院文献>ACS Omega >Electrochemical Analysis of the Carbon-EncapsulatedLithium Iron Phosphate Nanochains and Their High-Temperature ConductivityProfiles
【2h】

Electrochemical Analysis of the Carbon-EncapsulatedLithium Iron Phosphate Nanochains and Their High-Temperature ConductivityProfiles

机译:碳封装的电化学分析磷酸铁锂纳米链及其高温电导率个人资料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon-encapsulated LiFePO4 (LFP) nanochains were prepared as a cathode material for lithium batteries by sol–gel method using citric acid as the carbon source. The prepared LFP/C material is characterized by structural, morphological, and electrochemical characterization. LFP/C shows an orthorhombic olivine structure with “Pnma” space group having an average particle size of 50 nm. The uniform distribution of LFP particles coated by the carbon matrix as a nanochain array has been analyzed by scanning electron microscopy and transmission electron microscopy analysis of the sample. The electrochemical performance of the LFP/C nanochain has been analyzed using galvanostatic cycling, cyclic voltammetry, and impedance analysis of the assembled batteries. The sol–gel-derived LFP/C nanochain exhibits better capacity and electrochemical reversibility in line with the literature results. The high-temperature conductivity profile of the sample has been recorded from room temperature to 473 K using impedance analysis of the sample. The transport dynamics have been analyzed using the dielectric and modulus spectra of the sample.A maximum conductivity up to 6.74 × 10–4 Scm–1 has been obtained for the samples at highertemperature (448 K). The nucleation and growth at higher temperatureact as factors to facilitate the intermediate phase existence in theLiFePO4 sample in which the phase change that occurs above400 K gives irreversible electrochemical changes in the LFP/C samples.
机译:采用柠檬酸作为碳源,通过溶胶-凝胶法制备了碳封装的LiFePO4(LFP)纳米链作为锂电池的正极材料。制备的LFP / C材料通过结构,形态和电化学表征进行表征。 LFP / C显示具有“ Pnma”空间群的正交晶体橄榄石结构,其平均粒径为50 nm。已经通过样品的扫描电子显微镜和透射电子显微镜分析来分析被碳基质作为纳米链阵列涂覆的LFP颗粒的均匀分布。 LFP / C纳米链的电化学性能已使用恒电流循环,循环伏安法和组装电池的阻抗分析进行了分析。溶胶-凝胶衍生的LFP / C纳米链具有更好的容量和电化学可逆性,与文献结果一致。使用样品的阻抗分析,已记录了从室温到473 K的样品的高温电导率曲线。使用样品的介电谱和模量谱分析了传输动力学。最大电导率高达6.74×10 –4 S对于更高的样品,已获得cm –1 温度(448 K)。高温下的成核和生长充当促进中间阶段存在的因素上面发生相变的LiFePO4样品400 K在LFP / C样品中产生不可逆的电化学变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号