首页> 美国卫生研究院文献>Iranian Journal of Biotechnology >Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose Fructose and Sucrose in Double Chamber Microbial Fuel Cell
【2h】

Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose Fructose and Sucrose in Double Chamber Microbial Fuel Cell

机译:使用双腔微生物燃料电池中的葡萄糖果糖和蔗糖表征铜绿假单胞菌的电流产生电势

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Background: Different concentrations of the simple carbon substrates i.e. glucose, fructose, and sucrose were tested to enhance the performance of the mediator-less double chamber microbial fuel cell (MFC). >Objectives: The power generation potential of the different electron donors was studied using a mesophilic Fe (III) reducer and non-fermentative bacteria Pseudomonas aeruginosa-isolated from municipal wastewater. >Materials and Methods: A double chamber MFC was operated with three different electron donors including glucose, sucrose, and fructose. Substrate utilization pattern was determined through chemical oxygen demand (COD) removal rate and voltage generation. In addition, electrochemical, physicochemical, and microscopic analysis of the anodic biofilm was conducted. >Results: P. aeruginosa was proven to effectively utilize hexose and pentose sugars through anode respiration. Higher power density was generated from glucose (136 ± 87 mWm2) lead by fructose (3.6 ± 1.6 mWm2) and sucrose (8.606 ± mWm2).Furthermore, a direct relation was demonstrated between current generation rate and COD removal efficiency. CODremoval rates were, 88.5% ± 4.3%, 67.5% ± 2.6%, and 54.2% ± 1.9% with the three respective sugars in MFC. Scanningelectron microscopy (SEM) demonstrated that the bacterial attachment was considerably abundant in glucose fed MFC thanin the fructose and sucrose operated MFC.>Conclusion: This study has revealed that electron donor type in the anodic compartment controls the growth of anodicbiofilm or anode-respiring bacteria (ARB).
机译:>背景:测试了不同浓度的简单碳底物,即葡萄糖,果糖和蔗糖,以提高无介质双腔微生物燃料电池(MFC)的性能。 >目标:使用嗜温的Fe(III)还原剂和非发酵细菌铜绿假单胞菌从市政废水中分离出来,研究了不同电子供体的发电潜力。 >材料和方法:使用三个不同的电子供体(包括葡萄糖,蔗糖和果糖)操作双室MFC。通过化学需氧量(COD)去除速率和电压产生来确定基板利用率模式。另外,对阳极生物膜进行了电化学,物理化学和显微分析。 >结果:事实证明,铜绿假单胞菌可通过阳极呼吸有效利用己糖和戊糖。果糖(3.6±1.6 mWm 2 )和蔗糖(8.606±mWm 2 )导致的葡萄糖(136±87 mWm 2 )导致更高的功率密度。 sup>)。此外,还证明了电流产生率与COD去除效率之间的直接关系。化学需氧量MFC中的三种糖分的去除率分别为88.5%±4.3%,67.5%±2.6%和54.2%±1.9%。扫描电子显微镜(SEM)表明,葡萄糖进料的MFC中细菌附着明显丰富,在果糖和蔗糖中操作MFC。>结论:这项研究表明,阳极隔室中的电子供体类型控制着阳极的生长生物膜或阳极呼吸细菌(ARB)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号