首页> 美国卫生研究院文献>iScience >Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids
【2h】

Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids

机译:脱羰钯催化的铃木-宫浦交叉偶联羧酸合成联芳基

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe biaryl motif is a privileged subunit in chemical science (, , ). The importance of biaryls is highlighted by the wide presence in pharmaceuticals, functional materials, and natural products in both industrial and academic research (, ). The biaryl architecture is at the heart of widely prescribed antihypertensive and anticancer agents, which, in addition to the huge economic benefit, save the lives of millions of patients annually (A) (). The tremendous success of the conventional Suzuki-Miyaura cross-coupling of aryl halides has provided multiple avenues to generate biaryl architectures of key significance to the chemical industry (, , , ). Since the 2010 Nobel Prize in Chemistry (), more than 12,000 publications address the improvements to the conventional Suzuki-Miyaura cross-coupling, signifying the great advantage of implementing this transformation (). Although effective, the conventional Suzuki-Miyaura cross-coupling of aryl halides suffers from major limitations, including (1) the use of less available aryl halides, (2) the requirement for stoichiometric inorganic base to trigger transmetallation, and (3) generation of toxic halide waste.class="figpopup" href="/pmc/articles/PMC6731188/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Background and Reaction Development(A) Examples of top-selling pharmaceuticals containing the biaryl structure.(B) Enzymatic decarbonylation in nature.(C) Decarboxylative cross-coupling of carboxylic acids (loss of CO2): current state of the art.(D) Proposed decarbonylative cross-coupling of carboxylic acids (loss of CO).(E) Mechanism of the classic and decarbonylative Suzuki cross-coupling.(F) Development of decarbonylative Suzuki cross-coupling. Dppb, 1,4-bis(diphenylphosphino)butane; PCy3, tricyclohexylphosphine; piv, pivaloyl.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介联芳基序是化学科学中的优先亚基(,,)。在工业和学术研究中,药物,功能材料和天然产品的广泛存在突出了联芳基的重要性。联芳结构是广泛使用的降压药和抗癌药的核心,除具有巨大的经济效益外,每年还可以挽救数百万患者的生命(A)()。常规的芳基卤化物的Suzuki-Miyaura交叉偶联的巨大成功提供了多种途径来生成对化学工业具有重要意义的联芳构架(,,,)。自2010年诺贝尔化学奖()以来,已有12,000多种出版物探讨了对常规铃木-宫浦交叉耦合的改进,这标志着实施该转变的巨大优势()。尽管有效,但传统的芳基卤化物的Suzuki-Miyaura交叉偶联具有主要局限性,包括(1)使用较少量的芳基卤化物;(2)需要化学计量的无机碱来触发金属转移,以及(3)生成<!-fig ft0-> <!-fig mode = article f1-> class =“ figpopup” href =“ / pmc / articles / PMC6731188 / figure / fig1 / “ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“>图1 <!-标题a7->背景和反应开发(A)畅销产品示例含有联芳基结构的药物。(B)本质上是酶促脱羰基的。(C)羧酸的脱羧交叉偶联(CO2的损失):当前的技术水平。(D)提议的羧酸的脱羰交叉偶联(损失的是CO)。(E)经典和脱羰Suzuki偶联的机理。(F)脱羰Suzuki偶联的发展。 Dppb,1,4-双(二苯基膦基)丁烷; PCy3,三环己基膦; piv,新戊酰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号