首页> 美国卫生研究院文献>iScience >Controlling Cell Fate Specification System by Key Genes Determined from Network Structure
【2h】

Controlling Cell Fate Specification System by Key Genes Determined from Network Structure

机译:通过网络结构确定的关键基因控制细胞命运指定系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec6title">IntroductionNetwork systems produce dynamics of molecular activity in organisms, and such dynamics are thought to be the origin of biological functions (, , ). A variety of cell types originate in the diversity of steady states of gene expression. We recently developed a new theoretical framework (linkage logic theory) (, , ), with which key nodes for controlling nonlinear dynamics are identified only from network structure without assuming quantitative details, such as functional forms, parameters, or initial states. According to this theory, the dynamics of a system is controllable to converge on any solution by controlling a subset of nodes called a feedback vertex set (FVS). Therefore, if the dynamics of a GRN has multiple steady states, we should be able to reproduce them and control the dynamics of the system by manipulating the activities of FVS molecules alone.In the present study, we applied the linkage logic theory to a GRN that specifies cell fates in embryos of the ascidian Ciona intestinalis (type A; also called Ciona robusta). The network structure for the specification of cell fate has been determined by a genome-wide gene knockdown assay for regulatory genes that are expressed during embryogenesis () and was recently updated using data that had been accumulated after the initial construction (). Hence, if the fate decision is based on the steady states of this network, cell-type-specific gene expression patterns should be reproduced by manipulating the activities of FVS in the network. Here, we show that the minimum FVSs of this network contain only five factors and that the dynamics of the GRN is indeed controllable by these five FVS factors.
机译:<!-fig ft0-> <!-fig @ position =“ position” anchor“ == f4-> <!-fig mode =” anchred“ f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec6title”>简介网络系统会产生生物体内分子活性的动力学,这种动力学被认为是生物功能的起源(“”)。多种细胞类型起源于基因表达稳态的多样性。我们最近开发了一种新的理论框架(链接逻辑理论)(,,),通过该框架,仅从网络结构中识别出控制非线性动力学的关键节点,而无需假设定量的细节,例如功能形式,参数或初始状态。根据该理论,通过控制称为反馈顶点集(FVS)的节点子集,可以控制系统的动力学收敛于任何解决方案。因此,如果GRN的动力学具有多个稳态,我们应该能够通过单独操纵FVS分子的活性来复制它们并控制系统的动力学。在本研究中,我们将链接逻辑理论应用于GRN它指定了海生小肠Ciona intestinalis(A型;也称为Cionarobusta)胚胎中的细胞命运。规范细胞命运的网络结构已通过针对胚胎发生过程中表达的调节基因的全基因组基因敲低测定法确定,最近使用初始构建后积累的数据进行了更新。因此,如果命运决定基于该网络的稳态,则应通过操纵网络中FVS的活动来复制特定于细胞类型的基因表达模式。在这里,我们表明该网络的最小FVS仅包含五个因素,并且GRN的动态确实可以由这五个FVS因素控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号