首页> 美国卫生研究院文献>iScience >Spatial Phylogenetics of Florida Vascular Plants: The Effects of Calibration and Uncertainty on Diversity Estimates
【2h】

Spatial Phylogenetics of Florida Vascular Plants: The Effects of Calibration and Uncertainty on Diversity Estimates

机译:佛罗里达维管束植物的空间系统发育:校准和不确定性对多样性估计的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe recent explosion of biodiversity data (spatial and genetic) along with environmental data (regarding climate, terrain, and vegetation), along with novel analytical methods and tools, has enabled an unprecedented capability to model species distributions and assemble those results into broad-scale diversity assessments (e.g., , , , ). Linking spatial ecological patterns to phylogenetic information is more powerful still (, ) given that species assemblages encompassing deeper phylogenetic nodes and more evolutionary history are arguably more diverse than other areas with the same number of species connected via shallower nodes (). Phylogenetic approaches extend diversity measurements from simplistic species counts to measures that also inform evolutionary pattern and process.One of the key measures in spatial phylogenetics is phylogenetic diversity (PD; ). PD is calculated as the sum of branch lengths from a phylogenetic tree connecting the terminal taxa from a specific location, typically to the root of the tree. PD can be interpreted either as the amount of “feature diversity” contained within a region of interest when using a phylogram, i.e., the number of apomorphies present in an area, or as the amount of “evolutionary history” when using a time-calibrated chronogram (, ). Those regions with higher PD than others may be prioritized for conservation (i.e., as containing higher genetic diversity or a greater amount of evolutionary history), although there are obviously other potential criteria, such as threat status, that should be applied in conservation assessments (). PD is typically strongly correlated with species richness, because more terminal taxa in a sample means that a larger portion of the tree is expected to be sampled. developed a compound spatial phylogenetic metric, Relative Phylogenetic Diversity (RPD), designed to examine whether unusually long or unusually short branches are present in a location. PD and RPD measures along with associated randomization tests can help elucidate the evolutionary processes that have generated biotas, which in turn support stronger assessments of conservation priorities.The evolutionary trees used in spatial phylogenetic studies are often not built by the authors performing the study, and tree building is necessarily not afforded the same level of scrutiny as analysis of spatial ecological data, despite the critical importance of trees for rigorous inference. Instead, ecologists have often relied on (1) converting a taxonomic hierarchy directly into a tree (e.g., ), (2) shortcut trees constructed for focal species via Phylomatic software (e.g., , , href="#bib85" rid="bib85" class=" bibr popnode">Wright et al., 2007, href="#bib35" rid="bib35" class=" bibr popnode">Liu et al., 2013) or the Open Tree of Life (OTL; href="#bib28" rid="bib28" class=" bibr popnode">Hinchliff et al., 2015), (3) automated assembly of published sequences such as PhyloGenerator (href="#bib50" rid="bib50" class=" bibr popnode">Pearse and Purvis, 2013), (4) literature-based trees (e.g., href="#bib5" rid="bib5" class=" bibr popnode">Beaulieu et al., 2012), or (5) framework trees vetted by the phylogenetics community (e.g., href="#bib73" rid="bib73" class=" bibr popnode">The Angiosperm Phylogeny Group IV, 2016, href="#bib65" rid="bib65" class=" bibr popnode">Soltis et al., 2011).Despite the relative ease of acquiring such trees, their quality and inherent uncertainties are rarely examined, and the impact of these factors on PD assessment has not been well studied (but see href="#bib52" rid="bib52" class=" bibr popnode">Qian et al., 2015, href="#bib72" rid="bib72" class=" bibr popnode">Swenson, 2009, href="#bib38" rid="bib38" class=" bibr popnode">Molina-Venegas and Roquet, 2013, href="#bib54" rid="bib54" class=" bibr popnode">Rangel et al., 2015, href="#bib75" rid="bib75" class=" bibr popnode">Thornhill et al., 2017). There remains a need to better document how factors involved in constructing phylogenetic trees (e.g., phylogenetic uncertainty and taxon sampling) influence these metrics. Both tree topology and branch lengths are determined by the sampling of taxa and the gene sequences employed, and these factors must be considered when computing and interpreting PD measures. For example, limited taxonomic sampling from a tree will produce longer individual branches than are truly present, whereas limited sampling of genetic data may result in unrepresentative branch lengths. Likewise, the use of phylograms versus chronograms yields branch length differences and therefore different values for PD measures. The phylogenetic depth over which trees are computed will also affect the magnitude of these metrics: older clades have longer branches in a chronogram and therefore contribute to higher estimates of PD than younger clades. Finally, failure to account for tree uncertainty might inflate the confidence in a given result. This last issue is particularly underexplored, but crucial for interpreting PD values.Here we provide a comprehensive examination of how the choice of input phylogenetic trees and inclusion of phylogenetic uncertainty affect the assessment of PD measures, utilizing Florida vascular plants as a case study. To test the importance of input trees, we developed phylogenetic trees for the specific purpose of estimating biodiversity through integration with distribution models. A key rationale for doing so was to determine if a more comprehensive, well-developed, and purpose-built phylogenetic tree would yield different estimates of PD relative to those built from easily available and existing trees obtained, for example, using Phylomatic (href="#bib79" rid="bib79" class=" bibr popnode">Webb and Donoghue, 2005), or by pruning a subtree from a pre-assembled supertree (i.e., the OTL; href="#bib28" rid="bib28" class=" bibr popnode">Hinchliff et al., 2015).We chose Florida as the focus for study because it is home to approximately 4,300 species of native or naturalized vascular plants and a broad range of terrestrial and aquatic habitats (href="#bib87" rid="bib87" class=" bibr popnode">Wunderlin et al., 2017). Furthermore, Florida is part of the North American Coastal Plain biodiversity hotspot (href="#bib46" rid="bib46" class=" bibr popnode">Noss et al., 2015). Florida's flora ranges from temperate, eastern deciduous forest taxa in the north to tropical elements in central and southern Florida (href="#bib42" rid="bib42" class=" bibr popnode">Myers and Ewel, 1990); these unique floristic elements mix at transition zones, leading to novel communities that might be expected to have unusual phylogenetic affinities. At the same time, past climatic changes caused inundation of much of the state, forming ancient shorelines, such as the Lake Wales Ridge (LWR), that still harbor an unusual, highly endemic scrub flora and fauna (href="#bib17" rid="bib17" class=" bibr popnode">Dobson et al., 1997). The southern portion of Florida has a subtropical climate and includes unique ecoregions such as the Everglades, Big Cypress and Miami Ridge, and Pine Rocklands, each with characteristic floristic elements (href="#bib36" rid="bib36" class=" bibr popnode">Long and Lakela, 1971). Florida also supports the third highest concentration of federally sensitive, threatened, and endangered species in the United States (href="#bib30" rid="bib30" class=" bibr popnode">Ihlo et al., 2014), after California and Hawaii (href="#bib17" rid="bib17" class=" bibr popnode">Dobson et al., 1997). Furthermore, one-third of the flora of Florida is now composed of exotic species (either naturalized or invasive), and habitat loss due to human development is mounting (href="#bib24" rid="bib24" class=" bibr popnode">Gordon, 1998). Still, despite the magnitude of ecological and conservation concerns in this region, little is known about the overall geographic patterns of plant diversity in Florida.The present study had both empirical and methodological goals. Our empirical goal was to test hypotheses regarding patterns of Florida biodiversity derived from previous studies of forest types, vertebrates, and butterflies. In particular, work by documented an overall decrease in diversity from north to south in Florida, although this pattern was only assessed qualitatively based on maps of richness from a variety of vertebrates and butterflies. These conversed patterns of diversity, when compared with general latitudinal diversity gradients (href="#bib83" rid="bib83" class=" bibr popnode">Wiens et al., 2009, href="#bib7" rid="bib7" class=" bibr popnode">Buckley et al., 2010), may relate more to the unique transitional zones from temperate to tropical floras in Florida and the underlying climate, soil, and terrain of the region than to temperature. Previous work has noted that transitional areas, such as the Southern Coastal Plain ecoregion and northern peninsular Florida with southern hardwood forests and temperate broad-leaved evergreen forests, harbor particularly high diversity (href="#bib25" rid="bib25" class=" bibr popnode">Greller, 1980). Observed PD patterns in plants should be strongly concordant with previous hypotheses of diversity, but some geographic areas may harbor unexpectedly high areas of PD, such as the Miami Ridge ecoregion and its tropical hammock forest flora (href="#bib42" rid="bib42" class=" bibr popnode">Myers and Ewel, 1990). In such areas, where there may be mixing of floristic elements, we predicted concentrations of significantly overdispersed (e.g., even) lineages (based on PD) and concentrations of unusually long branches (based on RPD). We further predicted concentrations of significant phylogenetic clustering in areas wherein habitat may select for specific community members (also called “habitat filtering”), as well as significant concentrations of shorter-than-expected branches in areas where lineages have potentially diversified in situ, such as the LWR. Finally, we attempted to contextualize these findings from a conservation perspective, given ongoing rapid anthropogenic changes to native landscapes in Florida.Our methodological goals were to explore the effect of the choice of phylogenetic tree on spatial phylogenetic metrics (PD and RPD) and to provide an approach to account more effectively for sources of uncertainty in phylogenetic trees. We generated PD and RPD using a variety of input phylogenetic trees and compared the results using multiple approaches to understand how to interpret differences and uncertainty in these assessments. We expected greater variation among branch lengths across the tree in chronograms than in phylograms, as branches can often be either greatly lengthened or shortened, reflecting constraints of evolutionary time. This difference was predicted to affect the distribution of observed PD, but the impact on significance tests is poorly characterized (but see href="#bib75" rid="bib75" class=" bibr popnode">Thornhill et al., 2017). We also examined how spatial phylogenetic metrics vary between trees pruned from existing supertrees and those inferred from curated analysis where stringent efforts have been made to close gaps in taxon sampling, using a strategic approach for gene sampling and branch length assessments. Finally, we used a Bayesian framework to generate a distribution of trees representing uncertainty in phylogenetic estimates to assess the impacts on PD.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介生物多样性数据(空间和遗传)和环境数据(关于气候)的近期爆炸,地形和植被)以及新颖的分析方法和工具,使人们能够以前所未有的能力对物种分布进行建模并将这些结果整合到大规模的多样性评估中(例如,,,)。鉴于包含更深的系统发育节点和更多进化史的物种组合比其他具有相同数量物种的物种通过较浅的节点连接的地区更具争议性,将空间生态模式与系统发育信息联系起来仍然更为有效。系统发育方法将多样性的测量从简单的物种计数扩展到了也能为进化模式和过程提供信息的测量方法。空间系统发育学的关键指标之一是系统发育多样性(PD;)。 PD计算为来自从特定位置(通常到树的根部)连接末端分类单元的系统树的分支长度的总和。 PD可以解释为使用系统发育图时包含在感兴趣区域内的“特征多样性”的数量,即某个区域中存在的无晶体形态的数量,也可以解释为使用时间校准的“进化历史”的数量计时码表(,)。尽管显然还有其他可能的标准,例如威胁状态,在保护性评估中也应优先考虑那些具有较高局部放电率的区域进行保护(即,具有更高的遗传多样性或更多的进化史)。 )。 PD通常与物种丰富度密切相关,因为样本中的更多分类单元意味着需要对树木的较大部分进行采样。开发了一种复合空间系统发育指标,相对系统发育多样性(RPD),旨在检查某个位置是否存在异常长或异常短的分支。 PD和RPD措施以及相关的随机测试可以帮助阐明产生生物区系的进化过程,进而支持对保护优先级进行更强的评估。进行空间系统发育研究的进化树通常不是由进行这项研究的作者建造的,并且尽管树木对于严格的推断至关重要,但树木的建造并不一定像空间生态数据分析那样受到严格的审查。取而代之的是,生态学家通常依靠(1)将分类层次直接转换为树(例如),(2)通过Phylomatic软件(例如,,href =“#bib85” rid = “ bib85” class =“ bibr popnode”>赖特等人,2007 ,href="#bib35" rid="bib35" class=" bibr popnode">刘等人,2013 )或开放生命之树(OTL; href="#bib28" rid="bib28" class=" bibr popnode"> Hinchliff等人,2015 ),(3)已出版的自动化组装序列,例如PhyloGenerator(href="#bib50" rid="bib50" class=" bibr popnode"> Pearse and Purvis,2013 ),(4)基于文献的树(例如,href = “#bib5” rid =“ bib5” class =“ bibr popnode”> Beaulieu等人,2012 ),或(5)系统发育学社区审查过的框架树(例如,href =“#bib73” rid =“ bib73” class =“ bibr popnode”>被子植物系统学第四组,2016 ,href="#bib65" rid="bib65" class=" bibr popnode"> Soltis等,2011 )。尽管相对容易获得t芦苇,它们的质量和固有的不确定性很少检查,并且这些因素对PD评估的影响还没有得到很好的研究(但请参见href="#bib52" rid="bib52" class=" bibr popnode">钱敬等等,2015年,href="#bib72" rid="bib72" class=" bibr popnode">斯文森,2009年,href =“#bib38” rid =“ bib38” class =“ bibr popnode”> Molina-Venegas and Roquet,2013 ,href="#bib54" rid="bib54" class=" bibr popnode"> Rangel等人,2015 , href="#bib75" rid="bib75" class=" bibr popnode"> Thornhill等人,2017 )。仍然需要更好地记录构建系统树的相关因素(例如系统发育不确定性和分类群采样)如何影响这些指标。树的拓扑结构和分支长度都取决于分类单元的采样和所采用的基因序列,在计算和解释PD度量时必须考虑这些因素。例如,从一棵树进行的有限的生物分类采样将产生比实际存在的更长的单个分支,而对遗传数据的有限采样可能会导致无代表性的分支长度。同样地,使用系统记录图和时序图会产生分支长度差异,因此PD度量值也不同。计算树木的系统发生深度也将影响这些指标的大小:较早的进化枝在计时图中具有较长的分支,因此与较年轻的进化枝相比,PD的估算值更高。最后,无法解释树的不确定性可能会增加对给定结果的信心。最后一个问题的探索还特别不足,但对于解释PD值至关重要。在此,我们以佛罗里达州的维管束植物为例,对输入的系统发育树的选择和系统发育不确定性的纳入如何影响PD措施的评估进行了全面检查。为了测试输入树的重要性,我们开发了系统发育树,用于通过与分布模型集成来估计生物多样性的特定目的。这样做的关键原理是确定相对于从容易获得的树木和现有树木(例如,使用Phylomatic(href =“#bib79” rid =“ bib79” class =“ bibr popnode”> Webb和Donoghue,2005 ),或通过从预先组装的超级树(即OTL; href = “#bib28” rid =“ bib28” class =“ bibr popnode”> Hinchliff等人,2015 )。我们选择佛罗里达州作为研究的重点,因为它拥有大约4,300种天然或天然血管植物以及广泛的陆地和水生生境(href="#bib87" rid="bib87" class=" bibr popnode"> Wunderlin等人,2017 )。此外,佛罗里达州是北美沿海平原生物多样性热点地区的一部分(href="#bib46" rid="bib46" class=" bibr popnode"> Noss et al。,2015 )。佛罗里达的植物种类繁多,从北部的温带东部落叶林类群到佛罗里达州中部和南部的热带元素(href="#bib42" rid="bib42" class=" bibr popnode">迈尔斯和埃维尔,1990 );这些独特的植物元素在过渡带混合,形成了新的群落,可能具有异常的系统亲缘关系。同时,过去的气候变化导致该州大部分地区被洪水淹没,形成了古老的海岸线,例如威尔士湖山脊(LWR),仍然保留着不寻常的,高度流行的灌木丛动植物(href =“#bib17 “ rid =“ bib17” class =“ bibr popnode”> Dobson等,1997 )。佛罗里达州南部为亚热带气候,包括独特的生态区,例如大沼泽地,大柏树和迈阿密山脊以及松树岩地,每个都具有独特的植物区系(href =“#bib36” rid =“ bib36” class =“ bibr popnode“> Long和Lakela,1971年)。佛罗里达州还支持美国联邦敏感,受威胁和濒危物种的第三高集中度(href="#bib30" rid="bib30" class=" bibr popnode"> Ihlo et al。,2014 ),紧随加利福尼亚和夏威夷之后(href="#bib17" rid="bib17" class=" bibr popnode"> Dobson等,1997 )。此外,佛罗里达州三分之一的植物群现在都由外来物种(自然化或入侵性)组成,并且由于人类发展而造成的栖息地丧失正在加剧(href =“#bib24” rid =“ bib24” class =“ bibr popnode“>戈登,1998年)。尽管如此,尽管该地区受到生态和保护方面的关注,但对佛罗里达州植物多样性的总体地理格局知之甚少。本研究既有经验目标,也有方法论目标。我们的经验目标是检验关于佛罗里达生物多样性模式的假设,这些假设源自先前对森林类型,脊椎动物和蝴蝶的研究。尤其是,通过的工作记录了佛罗里达州从北到南的总体多样性下降,尽管这种模式仅基于各种脊椎动物和蝴蝶的丰富度图进行了定性评估。与一般的纬度多样性梯度相比,这些相反的多样性模式(href="#bib83" rid="bib83" class=" bibr popnode"> Wiens等,2009 ,href =“ #bib7“ rid =” bib7“ class =” bibr popnode“> Buckley等人,2010 ),可能与佛罗里达州从温带植物区系到热带植物区系以及潜在的气候,土壤和土壤的独特过渡带有关。该地区的地形要比温度高。先前的工作已经指出,过渡地区,例如南部沿海平原生态区和北部半岛佛罗里达州,拥有南部硬木森林和温带阔叶常绿森林,具有特别高的多样性(href =“#bib25” rid =“ bib25”类=“ bibr popnode”>格勒,1980年)。植物中观察到的局部放电模式应与先前的多样性假设高度一致,但某些地理区域可能会出乎意料地高局部放电区域例如迈阿密海岭生态区及其热带吊床森林植物区系(href="#bib42" rid="bib42" class=" bibr popnode">迈尔斯和埃维尔,1990 )。在这些区域中,可能会有植物区系混合在一起,我们预测了明显过度分散(例如均匀)的谱系(基于PD)的浓度和异常长的分支(基于RPD)的浓度。我们进一步预测了栖息地可以选择特定社区成员的区域中显着的系统发生聚类的浓度(也称为“栖息地过滤”),以及沿袭宗系可能在原地多样化的区域中浓度低于预期的分支的浓度也很高。作为轻水堆。最后,鉴于人为地对佛罗里达本地景观进行快速的人为改变,我们尝试从保护的角度对这些发现进行背景研究。我们的方法目标是探索系统树的选择对空间系统发育指标(PD和RPD)的影响并提供一种更有效地说明系统发育树中不确定性来源的方法。我们使用各种输入的系统发育树生成了PD和RPD,并使用多种方法比较了结果以了解如何解释这些评估中的差异和不确定性。我们预计,与历史记录相比,树状图在整个树上的分支长度之间的差异要更大,因为分支通常可以大大延长或缩短,反映了进化时间的限制。预计这种差异会影响观察到的PD的分布,但对显着性测试的影响描述不清(但请参见href="#bib75" rid="bib75" class=" bibr popnode"> Thornhill et al。,2017 )。我们还研究了使用策略性方法进行基因采样和分支长度评估的空间系统发育指标在现有超级树修剪的树木与策展分析推断的空间之间的差异,而策展分析则做出了巨大努力来缩小分类群采样中的差距。最后,我们使用贝叶斯框架生成代表系统发育估计不确定性的树木分布,以评估对PD的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号