首页> 美国卫生研究院文献>iScience >Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution
【2h】

Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution

机译:具有低聚乙二醇侧链的共轭聚合物可改善光催化氢的释放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPhotocatalytic hydrogen evolution from water is a promising technology to transfer solar energy into hydrogen energy with high-energy capacity and zero-emission features. Since the pioneering research of Honda and Fujishima, there has been much work on the development of semiconductors that enable efficient photocatalytic water splitting (, , , ). Organic photocatalysts for photocatalytic hydrogen evolution have received tremendous attention in the past several years (, , , , , , , , ) because of their unique feature of tunable electronic properties via molecular engineering (). The energy levels, absorption spectrum, and carrier mobility/type of organic photocatalysts can be easily tuned to realize efficient water reduction/oxidation. Consequently, various polymers with tailor-made chemical structures have been extensively studied. For example, g-C3N4 (, href="#bib23" rid="bib23" class=" bibr popnode">Martin et al., 2014, href="#bib16" rid="bib16" class=" bibr popnode">Lau et al., 2016), porous conjugated polymers(href="#bib32" rid="bib32" class=" bibr popnode">Sprick et al., 2015, href="#bib17" rid="bib17" class=" bibr popnode">Li et al., 2016a, href="#bib45" rid="bib45" class=" bibr popnode">Yang et al., 2016, href="#bib39" rid="bib39" class=" bibr popnode">Wang et al., 2017), covalent conjugated polymers (href="#bib36" rid="bib36" class=" bibr popnode">Vyas et al., 2015, href="#bib26" rid="bib26" class=" bibr popnode">Pachfule et al., 2018), and linear conjugated polymers (href="#bib33" rid="bib33" class=" bibr popnode">Sprick et al., 2016, href="#bib18" rid="bib18" class=" bibr popnode">Li et al., 2016b, href="#bib22" rid="bib22" class=" bibr popnode">Lu et al., 2017, href="#bib43" rid="bib43" class=" bibr popnode">Woods et al., 2017, href="#bib27" rid="bib27" class=" bibr popnode">Pati et al., 2017, href="#bib35" rid="bib35" class=" bibr popnode">Tseng et al., 2018, href="#bib14" rid="bib14" class=" bibr popnode">Kosco et al., 2018) have been widely developed as organic photocatalysts for hydrogen evolution and have shown promising photocatalytic activity over the past few years. Moreover, through multiple modification strategies, including doping (href="#bib21" rid="bib21" class=" bibr popnode">Liu et al., 2010, href="#bib31" rid="bib31" class=" bibr popnode">Ran et al., 2015), hybridization (href="#bib7" rid="bib7" class=" bibr popnode">Du et al., 2012, href="#bib3" rid="bib3" class=" bibr popnode">Chen et al., 2017b, href="#bib47" rid="bib47" class=" bibr popnode">Yu et al., 2018), and copolymerization (href="#bib49" rid="bib49" class=" bibr popnode">Zhang et al., 2010) on organic photocatalysts, highly efficient hydrogen evolution can be realized. In addition, suitable metal co-catalysts have been used to lower the redox overpotential and improve charge transfer and separation, which has greatly improved the photocatalytic performance of organic photocatalysts (href="#bib44" rid="bib44" class=" bibr popnode">Wu et al., 2018).To achieve high-performance hydrogen evolution, it is required that organic photocatalysts with strong light-harvesting capabilities and suitable energy levels be designed (href="#bib24" rid="bib24" class=" bibr popnode">Ong et al., 2016, href="#bib37" rid="bib37" class=" bibr popnode">Vyas et al., 2016, href="#bib50" rid="bib50" class=" bibr popnode">Zhang et al., 2016, href="#bib10" rid="bib10" class=" bibr popnode">Fu et al., 2018, href="#bib42" rid="bib42" class=" bibr popnode">Wang et al., 2018c, href="#bib46" rid="bib46" class=" bibr popnode">Yang et al., 2018). Furthermore, because of the short exciton diffusion length (href="#bib29" rid="bib29" class=" bibr popnode">Peumans et al., 2004) and low mobility of organic materials, the powder size of organic photocatalysts dispersed in water must be small to provide shorter distances for the separated charges emigrating to the edges of the organic photocatalysts, thus reducing the recombination inside the organic photocatalysts. Moreover, strong interactions between organic photocatalysts and metal co-catalysts are also encouraged to improve charge separation (href="#bib16" rid="bib16" class=" bibr popnode">Lau et al., 2016). However, it is challenging to realize all these characteristics because most reported organic materials/conjugated polymer-based photocatalysts sharing hydrophobic alkyl side chains show poor water dispersion (href="#bib18" rid="bib18" class=" bibr popnode">Li et al., 2016b) and lack binding points with metal co-catalysts.Hydrophilic conjugated polymers share both semiconductive conjugated backbones and hydrophilic side chains (href="#bib8" rid="bib8" class=" bibr popnode">Duan et al., 2013, href="#bib4" rid="bib4" class=" bibr popnode">Chueh et al., 2015, href="#bib5" rid="bib5" class=" bibr popnode">Cui and Bazan, 2018). The hydrophilic side chains impart polymers with excellent dispersity/solubility in polar solvents and water, enabling the application of such polymers in biosensing and imaging applications (href="#bib34" rid="bib34" class=" bibr popnode">Traina et al., 2011). Moreover, hydrophilic side chains can robustly interact with metal substrates, resulting in well-modified metal surfaces that promote optoelectronic device performance (href="#bib8" rid="bib8" class=" bibr popnode">Duan et al., 2013, href="#bib4" rid="bib4" class=" bibr popnode">Chueh et al., 2015, href="#bib5" rid="bib5" class=" bibr popnode">Cui and Bazan, 2018). The advantages of hydrophilic conjugated polymers are identical to the requirements of organic photocatalysts for hydrogen evolution. However, despite the above-mentioned multiple potential advantages, hydrophilic conjugated polymers for highly efficient hydrogen evolution have rarely been reported.Herein, we demonstrate a highly efficient strategy to boost the photocatalytic hydrogen evolution of conjugated polymers by functionalizing conjugated backbones with hydrophilic oligo (ethylene glycol) monomethyl ether (OEG) side chains. With rational chemical design, benzodithiophene and difluorobenzothiadiazole moieties were copolymerized to yield conjugated polymeric backbones with a wide absorption spectrum of 300–720 nm. Moreover, hydrophilic tetra- and hepta-(ethylene glycol) monomethyl ether side chains were employed to modify the conjugated polymer backbones (PBDTBT-4EO/PBDTBT-7EO, href="/pmc/articles/PMC6393733/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A), resulting in outstanding dispersion of conjugated polymers in water and high photocatalytic activity for hydrogen evolution. Compared with an alkyl-functionalized polymer (PBDTBT-C6C10, href="/pmc/articles/PMC6393733/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A), the OEG side-chain-functionalized conjugated polymers exhibited a 90-fold improvement in hydrogen evolution rate, reaching to 40 μmol h−1. The OEG side chains interact robustly with Pt co-catalysts, resulting in better charge transfer from the conjugated polymers to the co-catalysts. The photocurrent response and electrochemical impedance spectroscopy results showed that OEG side chains improved the charge separation efficiency of the conjugated polymers when in contact with water. The Mott–Schottky plots and density functional theory (DFT) calculations revealed that the OEG side chains in conjugated polymers can adsorb H+ in water, resulting in lower energy bands of PBDTBT-4EO/-7EO film on the surface when in contact with water. This is the first report of conjugated polymers with hydrophilic side chains strongly interacting with water and improving charge separation, which paves the way for the development of hydrophilic conjugated polymers for highly efficient hydrogen evolution from water.href="/pmc/articles/PMC6393733/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6393733_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6393733/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6393733/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Chemical Structures and Basic Properties of Conjugated Polymers(A) Chemical structures of PBDTBT-C6C10, PBDTBT-4EO, and PBDTBT-7EO.(B) UV-vis-NIR absorption spectra of PBDTBT-C6C10, PBDTBT-4EO, and PBDTBT-7EO.(C) Energy levels of conjugated polymers and the energy transfers among photocatalysts, co-catalysts, scarifying agent, and water.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介从水中光催化制氢是一种有前途的技术,可将太阳能转化为氢能能量容量和零排放功能。自从对本田和藤岛进行开创性研究以来,在开发能够有效进行光催化水分解的半导体方面进行了大量工作。在过去的几年中,用于光催化制氢的有机光催化剂因其通过分子工程学可调节的电子性质的独特特征而受到了极大的关注。可以容易地调节有机光催化剂的能级,吸收光谱和载流子迁移率/类型,以实现有效的水还原/氧化。因此,已经广泛研究了具有定制化学结构的各种聚合物。例如,g-C3N4(,href="#bib23" rid="bib23" class=" bibr popnode">马丁等人,2014 ,href =“#bib16” rid =“ bib16“ class =” bibr popnode“> Lau等人,2016 ),多孔共轭聚合物(href="#bib32" rid="bib32" class=" bibr popnode"> Sprick等人, 2015 ,href="#bib17" rid="bib17" class=" bibr popnode"> Li et al。,2016a ,href =“#bib45” rid =“ bib45” class =“ bibr popnode”> Yang等人,2016 ,href="#bib39" rid="bib39" class=" bibr popnode"> Wang等人,2017 ),共价共轭聚合物(href="#bib36" rid="bib36" class=" bibr popnode"> Vyas et al。,2015 ,href =“#bib26” rid =“ bib26” class = “ bibr popnode”> Pachfule等人,2018 )和线性共轭聚合物(href="#bib33" rid="bib33" class=" bibr popnode"> Sprick等人,2016 ,href="#bib18" rid="bib18" class=" bibr popnode"> Li et al。,2016b ,href =“#bib22” rid =“ bib22” class =“ bibr popnode“> Lu等人,2017 ,href="#bib43" rid="bib43" class=" bibr popnode">伍兹等人,2 017 ,href="#bib27" rid="bib27" class=" bibr popnode">帕蒂等人,2017 ,href =“#bib35” rid =“ bib35” class =“ bibr popnode”> Tseng等人,2018 ,href="#bib14" rid="bib14" class=" bibr popnode"> Kosco等人,2018 )有被广泛开发为用于氢释放的有机光催化剂,并且在过去几年中显示出令人鼓舞的光催化活性。此外,通过多种修改策略,包括掺杂(href="#bib21" rid="bib21" class=" bibr popnode"> Liu et al。,2010 ,href =“#bib31” rid =“ bib31” class =“ bibr popnode”> Ran等人,2015 ),杂交(href="#bib7" rid="bib7" class=" bibr popnode"> Du等人, 2012 ,href="#bib3" rid="bib3" class=" bibr popnode"> Chen等人,2017b ,href =“#bib47” rid =“ bib47” class =“ bibr popnode”> Yu等人,2018 )和共聚(href="#bib49" rid="bib49" class=" bibr popnode"> Zhang et al。,2010 在有机光催化剂上,可以实现高效的氢气释放。此外,已使用合适的金属助催化剂来降低氧化还原超电势并改善电荷转移和分离,从而极大地提高了有机光催化剂的光催化性能(href =“#bib44” rid =“ bib44” class =“ bibr popnode“> Wu等人,2018 )。要实现高性能的氢气释放,要求设计具有强光收集能力和合适能级的有机光催化剂(href =”#bib24 “ rid =” bib24“ class =” bibr popnode“> Ong等,2016 ,href="#bib37" rid="bib37" class=" bibr popnode">维斯等,2016 ,href="#bib50" rid="bib50" class=" bibr popnode"> Zhang等人,2016 ,href =“#bib10” rid =“ bib10”类=“ bibr popnode”> Fu等人,2018 ,href="#bib42" rid="bib42" class=" bibr popnode"> Wang等人,2018c ,href =“#bib46” rid =“ bib46” class =“ bibr popnode”> Yang等人,2018 )。此外,由于激子扩散长度短(href="#bib29" rid="bib29" class=" bibr popnode"> Peumans等人,2004 )并且有机材料的迁移率低,所以粉末分散在水中的有机光催化剂的尺寸必须小,以为迁移到有机光催化剂边缘的分离电荷提供更短的距离,从而减少有机光催化剂内部的重组。此外,还鼓励有机光催化剂和金属助催化剂之间的强相互作用改善电荷分离(href="#bib16" rid="bib16" class=" bibr popnode"> Lau等人,2016 )。然而,要实现所有这些特性是一项挑战,因为大多数报道的共享疏水烷基侧链的有机材料/共轭聚合物基光催化剂显示出较差的水分散性(href="#bib18" rid="bib18" class=" bibr popnode"> Li et al。,2016b )且与金属助催化剂之间没有结合点。亲水性共轭聚合物共享半导体共轭主链和亲水性侧链(href =“#bib8” rid =“ bib8” class =“ bibr popnode“> Duan等人,2013 ,href="#bib4" rid="bib4" class=" bibr popnode"> Chueh等人,2015 ,href = “#bib5” rid =“ bib5” class =“ bibr popnode”> Cui和Bazan,2018年)。亲水性侧链赋予聚合物优异的在极性溶剂和水中的分散性/溶解性,使此类聚合物可用于生物传感和成像应用(href="#bib34" rid="bib34" class=" bibr popnode"> Traina等,2011 )。此外,亲水性侧链可以与金属基底牢固相互作用,从而产生经过修饰的金属表面,从而提高了光电器件的性能(href="#bib8" rid="bib8" class=" bibr popnode"> Duan等人, 2013 ,href="#bib4" rid="bib4" class=" bibr popnode"> Chueh等人,2015 ,href =“#bib5” rid =“ bib5” class =“ bibr popnode”> Cui和Bazan,2018年)。亲水性共轭聚合物的优点与有机光催化剂对析氢的要求相同。然而,尽管具有上述多种潜在优势,但很少有报道报道亲水共轭聚合物能够高效地析氢。在此,我们展示了一种通过用亲水性低聚物(乙烯)官能化共轭骨架来促进共轭聚合物光催化氢析出的高效策略。乙二醇)单甲醚(OEG)侧链。通过合理的化学设计,将苯并二噻吩和二氟苯并噻二唑部分共聚,以产生具有300-720nm宽吸收光谱的共轭聚合物主链。而且,亲水的四和七(乙二醇)单甲基醚侧链被用来修饰共轭聚合物主链(PBDTBT-4EO / PBDTBT-7EO,href =“ / pmc / articles / PMC6393733 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 A),导致共轭聚合物在水中的出色分散和对析氢的高光催化活性。与烷基官能化聚合物(PBDTBT-C6C10)相比,href =“ / pmc / articles / PMC6393733 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1 “ rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 ),OEG侧链官能化的共轭聚合物的氢释放速率提高了90倍,达到至40μmolh -1 。 OEG侧链与Pt助催化剂牢固地相互作用,导致电荷从共轭聚合物更好地转移到助催化剂上。光电流响应和电化学阻抗谱结果表明,OEG侧链在与水接触时提高了共轭聚合物的电荷分离效率。 Mott-Schottky图和密度泛函理论(DFT)计算表明,共轭聚合物中的OEG侧链可以吸附水中的H + ,从而导致PBDTBT-4EO / -7EO薄膜的能带较低与水接触时的表面。这是具有亲水性侧链的共轭聚合物与水强烈相互作用并改善电荷分离的第一份报告,这为开发亲水性共轭聚合物以从水中高效析氢铺平了道路。<!-fig ft0-> < !-fig模式=文章f1-> href="/pmc/articles/PMC6393733/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title =点击%20on%20image%20to%20zoom&p = PMC3&id = 6393733_gr1.jpg“ target =” tileshopwindow“> target =” object“ href =” / pmc / articles / PMC6393733 / figure / fig1 /?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC6393733 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =“ ob-fig1”>图1 <!-说明a7->共轭聚合物的化学结构和基本性质(A)化学结构PBDTBT-C6C10,PBDTBT-4EO和PBDTBT-7EO的结构。(B)PBDTBT-C6C10,PBDTBT-4EO和PBDTBT-7EO的UV-vis-NIR吸收光谱。(C)共轭聚合物的能级和能量在光催化剂,助催化剂,松散剂和水之间转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号