首页> 美国卫生研究院文献>iScience >Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation
【2h】

Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation

机译:BiFeO3纳米结构的压电增强光催化作用可有效修复水。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionEnvironmental pollution and shortage of clean energy are among the most pressing problems that threaten sustainable development of human civilization. Water pollution caused by discharge of toxic, synthetic dyes into effluents is one of the major sources of environmental pollution (). The presence of even trace amounts of these synthetic dyes in water is extremely harmful because of their carcinogenic and mutagenic nature (, , , ). Owing to their high solubility and chemical stability, most of these synthetic dyes easily escape conventional water treatment methods and persist in the environment (). Advanced oxidation process (AOP) is a cost-effective and green approach to degrade such toxic dyes into harmless products, such as CO2 and H2O, using highly reactive species, including hydroxyl and superoxide radicals (, ).Photocatalysis is one of the most extensively researched fields of AOP, in which a semiconductor with a suitable bandgap can efficiently absorb light and form photogenerated electron-hole pairs. These electrons and holes can then migrate to the surface of the photocatalyst and initiate the oxidative/reductive processes, resulting in degradation of organic pollutants (). One of the main drawbacks that limits practical use of photocatalysts is the high electron-hole recombination rate, which ultimately lowers their photocatalytic efficiency. To overcome this problem, wide bandgap semiconductors, such as titanium dioxide (TiO2), are extensively used. However, having a wide bandgap limits the light absorption of these materials to the UV region (). Hence, researchers have proposed new strategies, including developing novel nanostructures, using co-catalysts (Pt, Pd, and RuO2), doping with rare-earth or transition metals, and fabricating heterojunctions to tune the bandgap of these materials, to lower the electron-hole recombination rate, and to increase the lifetime of the charge carriers (, , , , ). Although such approaches can improve the separation of photogenerated electrons and holes, they rely heavily on the use of expensive catalysts such as noble metals and suffer from complicated fabrication processes, which, in turn, create obstacles to their practical application (href="#bib37" rid="bib37" class=" bibr popnode">Wang et al., 2016).Apart from chemically modifying the wide bandgap, physical methods such as the application of external electric fields to an electrochemical cell were also employed to separate the electron-hole pairs and, hence, improve their photocatalytic performance (href="#bib2" rid="bib2" class=" bibr popnode">Barroso et al., 2013, href="#bib28" rid="bib28" class=" bibr popnode">Pesci et al., 2013). Even though this method has demonstrated strong potential to increase the photocatalytic efficiency, its high cost, complicated device structure, and difficult operation conditions provide significant challenges for practical use (href="#bib17" rid="bib17" class=" bibr popnode">Li et al., 2014, href="#bib11" rid="bib11" class=" bibr popnode">Hong et al., 2016, href="#bib37" rid="bib37" class=" bibr popnode">Wang et al., 2016).Generating a localized electric field directly on a photocatalyst's surface is a more practical approach than applying a macroscale electric field in a chemical cell because of cost and lower energy consumption. Combining piezoelectric materials with visible light photocatalysts is one way to achieve this. Piezoelectric materials can generate an internal electric field under strain and, hence, induce separation of photogenerated electric charges (href="#bib43" rid="bib43" class=" bibr popnode">Xue et al., 2015, href="#bib12" rid="bib12" class=" bibr popnode">Hong et al., 2010, href="#bib31" rid="bib31" class=" bibr popnode">Singh and Khare, 2017, href="#bib46" rid="bib46" class=" bibr popnode">Yun et al., 2018, href="#bib26" rid="bib26" class=" bibr popnode">Nan et al., 2017). This approach was used to fabricate primarily core-shell nanostructures, in which the core was composed of piezoelectric materials, such as ZnO, BaTiO3, and NaNbO3, whereas the shell consisted of visible light photocatalysts, including CuS, FeS, and AgO2. In this approach, it was possible to achieve enhanced reaction efficiency by using the dual stimuli of light and mechanical vibrations (href="#bib11" rid="bib11" class=" bibr popnode">Hong et al., 2016, href="#bib40" rid="bib40" class=" bibr popnode">Xiao et al., 2016, href="#bib16" rid="bib16" class=" bibr popnode">Li et al., 2015, href="#bib13" rid="bib13" class=" bibr popnode">Jia et al., 2018). However, fabrication of such dual-phase core-shell nanomaterials raises further complications, such as complex synthesis and weak mechanical coupling between the piezoelectric and photocatalytic counterparts under strain for extended periods of time.Low bandgap (i.e., visible light photocatalytic properties) and piezoelectric properties can co-exist in a single material. The use of BiFeO3 (BFO) as a promising candidate for visible light photocatalysis has been demonstrated owing to its low bandgap of ∼2.1 eV (href="#bib39" rid="bib39" class=" bibr popnode">Xian et al., 2011, href="#bib33" rid="bib33" class=" bibr popnode">Soltani and Entezari, 2013, href="#bib22" rid="bib22" class=" bibr popnode">Mocherla et al., 2013). In addition, BFO also possesses good piezo/ferroelectric performance with a large spontaneous polarization in excess of 100 μC cm−2 and piezoelectric coefficient (d33) of about 100 pm/V (href="#bib32" rid="bib32" class=" bibr popnode">Singh et al., 2006, href="#bib15" rid="bib15" class=" bibr popnode">Jung Min et al., 2012). We assume these properties render BFO an excellent candidate for efficiently using both light and vibrational energy for catalytic degradation of organic pollutants, without the need for coupling it to other materials or using an external bias (href="#bib29" rid="bib29" class=" bibr popnode">Qi et al., 2018).In this work, we fabricated pure, single-crystalline BFO nanosheets (NSs) and nanowires (NWs), which are both visible light photoactive and piezoelectric. These BFO nanostructures were able to harness photonic as well as mechanical energy for the degradation of model organic pollutants such as rhodamine B (RhB). By coupling their photocatalytic and piezoelectric properties, degradation of RhB dye was greatly enhanced. Reactive species trapping experiments revealed the underlying mechanism of their catalytic performance. Development of these nanostructures contributes to the use of green technologies, such as harnessing natural sunlight and scavenging waste energies, such as noise and vibrations, for efficient environmental applications.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介环境污染和清洁能源短缺是威胁可持续发展的最紧迫问题之一。人类文明。由有毒的合成染料排放到废水中引起的水污染是环境污染的主要来源之一。由于它们的致癌和诱变性质,即使在水中甚至微量的这些合成染料的存在也极为有害。由于它们的高溶解度和化学稳定性,这些合成染料中的大多数容易逃脱常规水处理方法并在环境中持续存在()。先进的氧化工艺(AOP)是一种经济高效的绿色方法,可使用包括羟基和超氧化物自由基(,)在内的高反应性物种将此类有毒染料降解为无害产品,例如CO2和H2O。光催化是最广泛的方法之一在AOP的研究领域中,具有合适带隙的半导体可以有效吸收光并形成光生电子空穴对。这些电子和空穴然后可以迁移到光催化剂的表面并引发氧化/还原过程,从而导致有机污染物的降解。限制光催化剂实际使用的主要缺点之一是高的电子-空穴复合速率,这最终降低了它们的光催化效率。为了克服该问题,广泛使用了宽带隙半导体,例如二氧化钛(TiO 2)。但是,具有较宽的带隙将这些材料的光吸收限制在UV区域()。因此,研究人员提出了新的策略,包括开发新的纳米结构,使用助催化剂(Pt,Pd和RuO2),掺杂稀土或过渡金属以及制造异质结以调节这些材料的带隙,降低电子。空穴重组率,以增加电荷载流子的寿命。尽管此类方法可以改善光生电子和空穴的分离,但它们严重依赖于贵金属等昂贵催化剂的使用,并且制造工艺复杂,从而给它们的实际应用带来了障碍(href =“ #bib37“ rid =” bib37“ class =” bibr popnode“> Wang等人,2016 )。除了化学修饰宽带隙外,物理方法(例如将外部电场施加到电化学电池)是也用于分离电子-空穴对,从而提高其光催化性能(href="#bib2" rid="bib2" class=" bibr popnode"> Barroso等人,2013 ,< a href =“#bib28” rid =“ bib28” class =“ bibr popnode”> Pesci等人,2013 )。即使此方法已显示出提高光催化效率的强大潜力,但其高成本,复杂的设备结构和困难的操作条件也为实际使用提出了重大挑战(href =“#bib17” rid =“ bib17” class =“ bibr popnode“> Li等人,2014 ,href="#bib11" rid="bib11" class=" bibr popnode"> Hong等人,2016 ,href =” #bib37“ rid =” bib37“ class =” bibr popnode“> Wang等人,2016 )。直接在光催化剂表面上生成局部电场比在电催化剂表面施加宏观电场更为实用。化学电池因成本高而能耗低。将压电材料与可见光光催化剂结合是实现这一目标的一种方法。压电材料可以在应变作用下产生内部电场,因此引起光生电荷的分离(href="#bib43" rid="bib43" class=" bibr popnode"> Xue et al。,2015 ,href="#bib12" rid="bib12" class=" bibr popnode"> Hong et al。,2010 ,href =“#bib31” rid =“ bib31” class =“ bibr popnode“> Singh and Khare,2017 ,href="#bib46" rid="bib46" class=" bibr popnode"> Yun et al。,2018 ,href =”# bib26“ rid =” bib26“ class =” bibr popnode“> Nan等人,2017 )。该方法用于制造主要的核-壳纳米结构,其中核由压电材料(例如ZnO,BaTiO3和NaNbO3)组成,而壳体由可见光光催化剂(包括CuS,FeS和AgO2)组成。通过这种方法,可以通过使用光和机械振动的双重刺激来提高反应效率(href="#bib11" rid="bib11" class=" bibr popnode"> Hong等,2016 < / a>,href="#bib40" rid="bib40" class=" bibr popnode"> Xiao et al。,2016 ,href =“#bib16” rid =“ bib16” class = “ bibr popnode”> Li等,2015 ,href="#bib13" rid="bib13" class=" bibr popnode">贾等,2018 )。然而这类双相核-壳纳米材料的制造进一步增加了复杂性,例如复杂的合成以及在长时间的应变下压电和光催化对应物之间的弱机械耦合。低带隙(即可见光光催化性能)和压电性能可以在一种材料中共存。由于BiFeO3(BFO)的低带隙约为2.1 eV,因此已证明可以用作可见光光催化的候选材料(href="#bib39" rid="bib39" class=" bibr popnode"> Xian等等人,2011 ,href="#bib33" rid="bib33" class=" bibr popnode">索尔塔尼和恩特扎里,2013 ,href =“#bib22” rid =“ bib22“ class =” bibr popnode“> Mocherla等人,2013 )。此外,BFO还具有良好的压电/铁电性能,自发极化超过100μCcm −2 ,压电系数(d33)约为100 pm / V(href =“# bib32“ rid =” bib32“ class =” bibr popnode“>辛格等人,2006 ,href="#bib15" rid="bib15" class=" bibr popnode">郑敏等人。 ,2012 )。我们认为这些特性使BFO成为有效利用光能和振动能催化降解有机污染物而无需将其与其他材料偶联或使用外部偏压的极佳候选者(href =“#bib29” rid =“ bib29“ class =” bibr popnode“> Qi等人,2018 )。在这项工作中,我们制作了纯的单晶BFO纳米片(NSs)和纳米线(NWs),它们都是可见光光敏的,压电的。这些BFO纳米结构能够利用光子能和机械能降解模型有机污染物,如罗丹明B(RhB)。通过耦合它们的光催化和压电性能,RhB染料的降解大大提高。反应性物种捕获实验揭示了其催化性能的潜在机理。这些纳米结构的发展有助于绿色技术的使用,例如利用自然阳光和清除浪费的能源(例如噪声和振动),以实现有效的环境应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号