首页> 美国卫生研究院文献>iScience >Human V6 Integrates Visual and Extra-Retinal Cues during Head-Induced Gaze Shifts
【2h】

Human V6 Integrates Visual and Extra-Retinal Cues during Head-Induced Gaze Shifts

机译:人类V6在头部诱发的视线移动过程中整合了视觉和视网膜外提示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionA remarkable property of the visual system is its feat to provide us with stable vision despite continuously changing retinal input induced by our movements of eyes, head, and body. This feat appears especially intriguing as the majority of visual areas are organized retinotopically, yet stability requires integration of visual input with cues from other modalities. Although the integration of eye movements with retinal signal has been studied extensively in both monkeys (, , , , , ) and humans (, , , ), the integration of visual signal with voluntary head movements remains barely studied at the level of neocortex (see , for subcortical function).In macaques and humans, previous studies examining cortical function focused on passive head motion or artificial vestibular stimulation to examine visual-vestibular integration (, , , href="#bib24" rid="bib24" class=" bibr popnode">Frank et al., 2014, href="#bib23" rid="bib23" class=" bibr popnode">Frank et al., 2016, href="#bib2" rid="bib2" class=" bibr popnode">Billington and Smith, 2015). However, active gaze shifts beyond eye movements also involve head rotation (href="#bib38" rid="bib38" class=" bibr popnode">Land, 1992). In fact, gaze change commands reach eye and head effector muscles at the same time (href="#bib3" rid="bib3" class=" bibr popnode">Bizzi et al., 1971), and human observers compensate for eye- and head-induced self-motion with equal precision (href="#bib14" rid="bib14" class=" bibr popnode">Crowell et al., 1998). Notably, however, despite this prominent role for head motion in visual stability almost nothing is known about which visual processing stages integrate head motion signals with retinotopic representations as technical limitations have hindered human neuroimaging to study the neural underpinnings of voluntary head movements.We recently circumvented these limitations and introduced an approach that allows participants to move their heads during fMRI scanning by exploiting the delay of several seconds between neural processing and blood-oxygen-level-dependent (BOLD) signal (see href="/pmc/articles/PMC6153141/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figures 1A–1C) (href="#bib46" rid="bib46" class=" bibr popnode">Schindler and Bartels, 2018). We constructed a custom-built air pressure-based head stabilization system that permitted head rotation during trials, but stabilized head position during data acquisition. Observers wore head-mounted magnetic resonance-compatible goggles while head movement was tracked online. This allowed generation of visual stimuli that could be modulated by head motion in real time (href="#bib46" rid="bib46" class=" bibr popnode">Schindler and Bartels, 2018). In two conditions, observers viewed approaching visual flow that was modulated by head motion. A congruent condition simulated a scenario of constant forward motion where head rotation resulted in looking around while being driven along a straight road. In the incongruent condition, observers performed identical head rotations, but visual consequences of head rotation were inversed such that visual and extra-retinal cues did not combine in any meaningful way but retinal motion was matched to the congruent condition. In both conditions, a demanding letter detection task assured fixation. Based on this paradigm we previously examined the integration of head movements and visual signals in a network of areas with established vestibular input. Particularly, a contrast between congruent and incongruent conditions revealed evidence consistent with the multi-modal integration of visual cues with head motion into a coherent “stable world” percept in the parietal operculum and in the anterior part of the parieto-insular cortex. This also applied for a subset of visual motion-responsive areas such as human medial superior temporal area (MST) (at uncorrected level), the dorsal part of the ventral intraparietal area (VIP), the cingulate sulcus visual area (CSv), and a region in the precuneus (Pc) (href="#bib46" rid="bib46" class=" bibr popnode">Schindler and Bartels, 2018). However, the important question whether retinotopic cortex and especially areas V3A and V6 play a role in visual stability during voluntary head movement remained open.href="/pmc/articles/PMC6153141/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6153141_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6153141/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6153141/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Illustration of Visual Stimuli and Head-Rotation Task, BOLD Signal Acquisition during a Trial, and Experimental Paradigm(A) Observers performed voluntary head rotations while being approached by a simulated 3D dot cloud in both congruent and incongruent conditions. Head rotations in the congruent condition lead to cloud rotation in opposite direction (-α) to the observer's head (α), as would be experienced when moving forward in a stable environment and looking around. In the incongruent condition, the cloud and head rotated in the same direction (α), resulting in perceptually arbitrary motion of the environment. Note that retinal flow as well as head motion were matched in both conditions.(B) Model of the evoked BOLD time course as predicted by the paradigm in (C). Stimulus presentation and active head movements induced BOLD signals during the trial phase (green shade) while the slow dynamics of the BOLD signal allowed acquisition of these responses even after stimulus offset, at a time when the observer's head was stabilized (acquisition phase, red shade).(C) Each trial started with an instruction phase when air cushions were emptied. In the trial phase, green arrowheads guided the observer's head rotation. In the acquisition phase, air cushions were inflated again to record BOLD responses. Observers performed a demanding fixation task across all phases and conditions, except the instruction phase (see href="#sec4" rid="sec4" class=" sec">Methods).
机译:<!-fig ft0-> <!-fig @ position =“ position” anchor“ == f4-> <!-fig mode =” anchred“ f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介视觉系统的一项显着特性是尽管能够不断为我们提供稳定的视觉效果由我们的眼睛,头部和身体的运动引起的视网膜输入改变。由于大多数视觉区域都是通过视网膜组织的,因此这一壮举尤其引人入胜,但是稳定性要求将视觉输入与其他方式的暗示相结合。尽管在猴子(“,”,“,”)和人类(“,”,“)中都已经广泛研究了眼球运动与视网膜信号的整合,但是在新皮层的水平上,仍很少研究视觉信号与自愿性头部运动的整合(请参见在猕猴和人类中,以前的研究皮质功能的研究主要集中于被动头部运动或人工前庭刺激,以检查视觉-前庭整合(“,,href =“#bib24” rid =“ bib24” class = “ bibr popnode”>弗兰克等人,2014 ,href="#bib23" rid="bib23" class=" bibr popnode">弗兰克等人,2016 ,href =“#bib2” rid =“ bib2” class =“ bibr popnode”>比灵顿和史密斯,2015年)。但是,活跃的视线转移不仅涉及眼睛运动,还涉及头部旋转(href="#bib38" rid="bib38" class=" bibr popnode">土地,1992 )。实际上,凝视改变命令同时到达眼睛和头部的效应肌(href="#bib3" rid="bib3" class=" bibr popnode"> Bizzi等人,1971 ),并且人类观察者以相同的精度补偿了眼睛和头部引起的自我运动(href="#bib14" rid="bib14" class=" bibr popnode"> Crowell等,1998 )。然而,值得注意的是,尽管头部运动在视觉稳定性中起着重要作用,但由于技术限制阻碍了人类的神经成像研究自愿性头部运动的神经基础,因此几乎没有人知道哪个视觉处理阶段将头部运动信号与视网膜代表相结合。这些局限性,并引入了一种方法,该方法可以使参与者在fMRI扫描过程中利用神经处理和血氧水平依赖(BOLD)信号之间的几秒钟延迟来移动其头部(请参阅href =“ / pmc / articles / PMC6153141 / figure / fig1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 A–1C)(href="#bib46" rid="bib46" class=" bibr popnode">迅达和巴特尔出版社,2018年)。我们构建了一个基于气压的定制头部稳定系统,该系统在试验期间允许头部旋转,但在数据获取过程中可以稳定头部位置。在网上跟踪头部运动时,观察者戴了头戴式磁共振兼容的护目镜。这样就可以生成视觉刺激,可以通过头部的实时运动对其进行调节(href="#bib46" rid="bib46" class=" bibr popnode">迅达和巴特尔,2018年)。在两种情况下,观察者观察到接近通过头部运动调节的视觉流。一致的情况模拟了持续向前运动的情况,在这种情况下,头部旋转导致在沿直线行驶时环顾四周。在不一致的情况下,观察者进行相同的头部旋转,但是头部旋转的视觉后果却相反,以至于视觉和视网膜外的提示没有任何有意义的方式结合在一起,但视网膜运动与一致的条件相匹配。在这两种情况下,要求苛刻的字母检测任务都能确保固定。基于此范例,我们先前检查了具有前庭输入的区域网络中头部运动和视觉信号的集成。尤其是,全等和非全等条件之间的对比揭示了证据,这些信息与视觉提示和头部运动在顶盖和顶顶皮质的前部中连贯成一个连贯的“稳定世界”感知相一致。这也适用于视觉运动响应区域的子集,例如人类内侧颞上区域(MST)(未校正水平),腹顶壁内区域的背侧部分(VIP),扣带回沟视觉区域(CSv)和(precneus(Pc))中的一个区域(href="#bib46" rid="bib46" class=" bibr popnode">迅达和巴特尔,2018年)。然而,视网膜视皮层,尤其是V3A和V6区域在自愿性头部运动过程中是否对视觉稳定性产生影响这一重要问题仍然悬而未决。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC6153141 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob-fig1”> <!-fig / graphic | fig / alternatives / graphic模式=“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 6153141_gr1。 jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6153141/figure/fig1/?report=objectonly">在单独的窗口中打开 class="figpopup" href="/pmc/articles/PMC6153141/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">图1 <!-标题a7->视觉刺激和头部旋转任务的图示,试验期间的BOLD信号采集以及实验范例(A)观察者在同意的情况下进行了自愿的头部旋转在一致和不一致的情况下都受到模拟3D点云的困扰。在稳定的环境中向前移动并环顾四周时,遇到这种情况时,头部的旋转会导致与观察者的头部(α)相反的方向(-α)旋转。在不一致的情况下,云和头沿相同的方向(α)旋转,导致环境在感知上任意运动。请注意,在两种情况下,视网膜血流和头部运动都是匹配的。(B)(C)中范式所预测的诱发BOLD时间过程模型。在试验阶段(绿色阴影),刺激的表现和活跃的头部运动诱发了BOLD信号,而在观察者的头部稳定的时候,即使在刺激偏移之后,BOLD信号的缓慢动态仍允许获得这些响应(采集阶段,红色阴影) (C)每个试验都从排空气垫的教学阶段开始。在试用阶段,绿色箭头引导观察者的头部旋转。在采集阶段,气垫再次充气以记录BOLD响应。观察员在指示阶段以外的所有阶段和条件中都执行了艰巨的修复任务(请参阅href="#sec4" rid="sec4" class=" sec">方法)。

著录项

  • 期刊名称 iScience
  • 作者单位
  • 年(卷),期 2018(7),-1
  • 年度 2018
  • 页码 191–197
  • 总页数 15
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号