首页> 美国卫生研究院文献>iScience >Chlorodifluoromethane as a C1 Synthon in the Assembly of N-Containing Compounds
【2h】

Chlorodifluoromethane as a C1 Synthon in the Assembly of N-Containing Compounds

机译:含氯氟甲烷作为N化合物组装中的C1合成子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe C1 chemistry has emerged as an elegant strategy for efficient preparation of homologous compounds, which added one extra carbon in modern chemical transformations (, , , , , , ). There are ample significance and a plethora of characteristics for C1 chemistry, for instance, carbon chain increasing (), construction of importance functional groups (carboxylic or carbonyl groups) (, ), incorporation of two or more organic small molecules to yield important products (), and modification of the pharmaceutical or natural products for value-added bulk (, ). Among all known C1 synthons, CO2, CO, and formic acid are the most famous ones, which have been widely used in various reaction processes, and many beautiful transformations have been developed with them, which further attracted more and more chemists devoted to this field (, , href="#bib1" rid="bib1" class=" bibr popnode">Aresta et al., 2014, href="#bib17" rid="bib17" class=" bibr popnode">Huang et al., 2011, href="#bib5" rid="bib5" class=" bibr popnode">Cokoja et al., 2011, href="#bib29" rid="bib29" class=" bibr popnode">Oh and Hu, 2013, href="#bib37" rid="bib37" class=" bibr popnode">Sordakis et al., 2018, href="#bib11" rid="bib11" class=" bibr popnode">Gibson, 1969, href="#bib7" rid="bib7" class=" bibr popnode">Enthaler et al., 2010). Despite the significance and great advance of C1 chemistry, the search for C1 synthons that display unique reactivity, complement to the current C1 sources, and add more value to C1 chemistry is still highly desirable. Thus, direct introduction of one extra carbon from cheap and available materials under mild conditions to provide a cost-efficient, pragmatic, and valuable alternative avenue would be popular in the field of synthetic and pharmaceutical communities, which might have deep impact on industry as well.Chlorodifluoromethane (ClCF2H) is well known as an inexpensive and abundant industrial raw material (href="#bib18" rid="bib18" class=" bibr popnode">Hudlicky and Pavlath, 1995) for the construction of various fluorinated compounds (href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2014, href="#bib9" rid="bib9" class=" bibr popnode">Fier and Hartwig, 2012, href="#bib13" rid="bib13" class=" bibr popnode">Gu et al., 2014, href="#bib44" rid="bib44" class=" bibr popnode">Yu et al., 2017, href="#bib41" rid="bib41" class=" bibr popnode">Wu et al., 2019, href="#bib26" rid="bib26" class=" bibr popnode">Miao et al., 2018, href="#bib46" rid="bib46" class=" bibr popnode">Zhang et al., 2019), featuring thermodynamic stability and kinetic inertness as well as atomic economy as fluorine source. Therefore, efficient transformations of this easily accessible raw material to create valuable chemicals have deservedly gained great attention. The most common transformation of ClCF2H involves the formation of difluorocarbene (:CF2) by the cleavage of both C-Cl and C-H bonds (href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1Aa) (href="#bib8" rid="bib8" class=" bibr popnode">Feng et al., 2017), usually under basic conditions with heteroatom nucleophiles, rendering the corresponding difluoromethylated heteroatom compounds (href="#bib14" rid="bib14" class=" bibr popnode">Hine and Porter, 1957, href="#bib28" rid="bib28" class=" bibr popnode">Nawrot and Jonczyk, 2007). Pyrolysis of ClCF2H at high temperature or pressure leads to the important raw industrial material tetrafluoroethylene (href="#bib18" rid="bib18" class=" bibr popnode">Hudlicky and Pavlath, 1995, href="#bib38" rid="bib38" class=" bibr popnode">Sung et al., 2004). Very recently a reaction by palladium-catalyzed cross-coupling between arylboronic acids and ClCF2H via a metal-difluorocarbene intermediate has been reported (href="#bib8" rid="bib8" class=" bibr popnode">Feng et al., 2017, href="#bib45" rid="bib45" class=" bibr popnode">Yu et al., 2019), representing the catalytic transformation of ClCF2H. Other conversion processes that do not involve difluorocarbene species were still difluoromethylation-related ones in which only one C-Cl bond was broken through a difluoromethyl radical pathway (href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1Ab) (href="#bib42" rid="bib42" class=" bibr popnode">Xu et al., 2018). Trifluoromethyl anion (CF3) is readily derived from the difluorocarbene species and external fluorine source via double cleavage of ClCF2H (href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1Ac) (href="#bib48" rid="bib48" class=" bibr popnode">Zheng et al., 2015). Intriguingly and surprisingly, quadruple cleavage of ClCF2H to provide versatile C1 synthons, by breaking one C-Cl bond, two stable C-F bonds, and one C-H bond orderly in a single-vessel reaction (href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1B), has never been reported to date, probably mainly because of the high BDE of C(sp3)-F bonds (the bond dissociation energy of a single C-F bond: 485 KJ/mol) (href="#bib30" rid="bib30" class=" bibr popnode">O'Hagan, 2008).href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6658997_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6658997/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Various Transformations of ClCF2H(A) Known transformations of ClCF2H.(a) Double cleavage of ClCF2H to lead to difluorocarbene species.(b) Single cleavage of ClCF2H to lead to difluoromethyl radical.(c) Double cleavage of ClCF2H with external F to lead to trifluoromethyl anion.(B) Our work.(d) Quadruple cleavage of ClCF2H as a C1 source.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 C1化学已成为一种高效制备同源化合物的绝妙策略,现代化学转化中的一种额外碳(,,,,,,)。对于C1化学而言,它具有足够的意义和众多特性,例如碳链增加(),重要官能团(羧基或羰基)的构建(,),两个或多个有机小分子的结合以产生重要产物( ),以及对药品或天然产品进行改造,以实现增值的批量(,)。在所有已知的C1合成子中,CO2,CO和甲酸是最著名的,已广泛用于各种反应过程中,并且已经开发出许多精美的转化形式,这进一步吸引了越来越多的化学家致力于这一领域(,,,href="#bib1" rid="bib1" class=" bibr popnode">阿雷斯塔et al。,2014 ,href =“#bib17” rid =“ bib17” class =“ bibr popnode“> Huang等,2011 ,href="#bib5" rid="bib5" class=" bibr popnode"> Cokoja等,2011 ,href = “#bib29” rid =“ bib29” class =“ bibr popnode”>噢和胡,2013 ,href="#bib37" rid="bib37" class=" bibr popnode"> Sordakis等。 ,2018 ,href="#bib11" rid="bib11" class=" bibr popnode">吉布森,1969 ,href =“#bib7” rid =“ bib7” class = “ bibr popnode”> Enthaler等人,2010 )。尽管C1化学的重要性和巨大进步,但仍迫切需要寻找显示出独特反应性,补充当前C1来源并为C1化学增加更多价值的C1合成子。因此,在温和的条件下从廉价和可得的材料中直接引入一种额外的碳,以提供一种具有成本效益,务实且有价值的替代途径,将在合成和制药界广泛流行,这也可能对工业产生深远影响众所周知,氯二氟甲烷(ClCF2H)是一种廉价而丰富的工业原料(href="#bib18" rid="bib18" class=" bibr popnode"> Hudlicky and Pavlath,1995 )各种氟化化合物(href="#bib40" rid="bib40" class=" bibr popnode"> Wang等人,2014 ,href =“#bib9” rid =“ bib9”类=“ bibr popnode”> Fier和Hartwig,2012 ,href="#bib13" rid="bib13" class=" bibr popnode"> Gu et al。,2014 ,href =“#bib44” rid =“ bib44” class =“ bibr popnode”>于,等。,href="#bib41" rid="bib41" class=" bibr popnode">吴等等,2019 ,href="#bib26" rid="bib26" class=" bibr popnode">苗等人,2018 ,href =“#bib46” rid = “ bib46” class =“ bibr popnode”> Zhang等人,2019 ),具有热力学稳定性和动力学惰性以及原子经济性作为氟源的特点。因此,这种容易获得的原料的有效转化以产生有价值的化学物质值得引起极大的关注。 ClCF2H的最常见转化涉及通过C-Cl和CH键的裂解形成二氟卡宾(:CF2)(href =“ / pmc / articles / PMC6658997 / figure / fig1 /” target =“ figure”类=“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 Aa)(href =“# bib8“ rid =” bib8“ class =” bibr popnode“> Feng等人,2017 ),通常在基本条件下使用杂原子亲核试剂,使相应的二氟甲基化杂原子化合物(href =”#bib14“ rid =“ bib14” class =“ bibr popnode”> Hine and Porter,1957年,href="#bib28" rid="bib28" class=" bibr popnode"> Nawrot and Jonczyk,2007年 )。 ClCF2H在高温或高温下热解产生重要的工业原料四氟乙烯(href="#bib18" rid="bib18" class=" bibr popnode"> Hudlicky and Pavlath,1995 ,href =“#bib38” rid =“ bib38” class =“ bibr popnode”> Sung等人,2004 )。最近,已经报道了芳基硼酸与ClCF2H之间通过金属二氟卡宾中间体进行钯催化的交叉偶联反应(href="#bib8" rid="bib8" class=" bibr popnode"> Feng等。 ,2017 ,href="#bib45" rid="bib45" class=" bibr popnode"> Yu等人,2019 ),代表了ClCF2H的催化转化。其他不涉及二氟卡宾物种的转化过程仍然是与二氟甲基化相关的过程,其中只有一个C-Cl键通过二氟甲基自由基途径被破坏(href =“ / pmc / articles / PMC6658997 / figure / fig1 /” target = “ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 Ab)(href =“#bib42” rid =“ bib42” class =“ bibr popnode”>徐等。,2018年)。三氟甲基阴离子(CF3 -)可以通过ClCF2H的双裂解容易地从二氟卡宾物种和外部氟源衍生而来(href =“ / pmc / articles / PMC6658997 / figure / fig1 /” target =“图“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 Ac)(href =“#bib48” rid =“ bib48” class =“ bibr popnode”> Zheng等人,2015 )。有趣且令人惊讶的是,ClCF2H的四重裂解可通过在单个容器反应中有序地断裂一个C-Cl键,两个稳定的CF键和一个CH键来提供通用的C1合成子(href =“ / pmc / articles / PMC6658997 / figure / fig1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 < / a> B),迄今为止尚未见报道,可能主要是由于C(sp 3 )-F键的高BDE(单个CF键的键解离能:485 KJ / mol)(href="#bib30" rid="bib30" class=" bibr popnode">奥哈根,2008 )。<!-fig ft0-> <!-fig mode =文章f1-> href="/pmc/articles/PMC6658997/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchred” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image% 20to%20zoom&p = PMC3&id = 6658997_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6658997/figure/fig1/?report=objectonly">在单独的窗口中打开 class =“ figpopup” href =“ / pmc / articles / PMC6658997 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“>图1 <!-标题a7->各种ClCF2H的转化(A)ClCF2H的已知转化。(a)ClCF2H的双裂解导致二氟卡宾物种。(b)ClCF2H的单裂解导致二氟甲基自由基。(c)ClCF2H的双裂解与外部F -导致产生三氟甲基阴离子。(B)我们的工作。(d)ClCF2H作为C1源的四重裂解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号