首页> 美国卫生研究院文献>Journal of Bacteriology >The Ribulose Monophosphate Pathway Substitutes for the Missing Pentose Phosphate Pathway in the Archaeon Thermococcus kodakaraensis
【2h】

The Ribulose Monophosphate Pathway Substitutes for the Missing Pentose Phosphate Pathway in the Archaeon Thermococcus kodakaraensis

机译:古生古猿热球菌中缺失磷酸戊糖途径的核糖一磷酸途径替代品

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ribulose monophosphate (RuMP) pathway, involving 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI), is now recognized as a widespread prokaryotic pathway for formaldehyde fixation and detoxification. Interestingly, HPS and PHI homologs are also found in a variety of archaeal strains, and recent biochemical and genome analyses have raised the possibility that the reverse reaction of formaldehyde fixation, i.e., ribulose 5-phosphate (Ru5P) synthesis from fructose 6-phosphate, may function in the biosynthesis of Ru5P in some archaeal strains whose pentose phosphate pathways are imperfect. In this study, we have taken a genetic approach to address this possibility by using the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. This strain possesses a single open reading frame (TK0475) encoding an HPS- and PHI-fused protein. The recombinant HPS-PHI-fused enzyme exhibited the expected HPS and PHI activities in both directions (formaldehyde fixing and Ru5P synthesizing). The TK0475 deletion mutant Δhps-phi-7A did not exhibit any growth in minimal medium, while growth of the mutant strain could be recovered by the addition of nucleosides to the medium. This auxotrophic phenotype together with the catalytic properties of the HPS-PHI-fused enzyme reveal that HPS and PHI are essential for the biosynthesis of Ru5P, the precursor of nucleotides, showing that the RuMP pathway is the only relevant pathway for Ru5P biosynthesis substituting for the classical pentose phosphate pathway missing in this archaeon.
机译:核糖单磷酸(RuMP)途径涉及3-己糖-6-磷酸合酶(HPS)和6-磷酸-3-己糖异构酶(PHI),现已被认为是甲醛固定和解毒的广泛原核途径。有趣的是,在各种古细菌菌株中也发现了HPS和PHI同源物,最近的生物化学和基因组分析提出了甲醛固定的逆反应,即由果糖6-磷酸合成核糖5-磷酸(Ru5P)的可能性,可能在一些戊糖磷酸途径不完善的古细菌菌株中Ru5P的生物合成中起作用。在这项研究中,我们采用了一种遗传方法来解决这一问题,方法是使用超嗜热古细菌Thermococcus kodakaraensis KOD1。该菌株具有编码HPS和PHI融合蛋白的单个开放阅读框(TK0475)。重组HPS-PHI融合酶在两个方向(甲醛固定和Ru5P合成)均表现出预期的HPS和PHI活性。 TK0475缺失突变体Δhps-phi-7A在基本培养基中没有任何生长,而突变菌株的生长可以通过向培养基中添加核苷来恢复。这种营养缺陷型与HPS-PHI融合酶的催化特性一起显示,HPS和PHI对于Ru5P(核苷酸的前体)的生物合成是必不可少的,表明RuMP途径是Ru5P生物合成唯一替代的途径。该古细菌中缺少经典的戊糖磷酸途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号