首页> 美国卫生研究院文献>Journal of Bacteriology >Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii.
【2h】

Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii.

机译:渗透诱导的嗜盐原核生物的代表:细菌嗜盐单胞菌和古细菌Haloferax volcanii。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Haloferax volcanii and Halomonas elongata have been selected as representatives of halophilic Archaea and Bacteria, respectively, to analyze the responses to various osmolarities at the protein synthesis level. We have identified a set of high-salt-related proteins (39, 24, 20, and 15.5 kDa in H. elongata; 70, 68, 48, and 16 kDa in H. volcanii) whose synthesis rates increased with increasing salinities. A different set of proteins (60, 42, 15, and 6 kDa for H. elongata; 63, 44, 34, 18, 17, and 6 kDa for H. volcanii), some unique for low salinities, was induced under low-salt conditions. For both organisms, and especially for the haloarchaeon, adaptation to low-salt conditions involved a stronger and more specific response than adaptation to high-salt conditions, indicating that unique mechanisms may have evolved for low-salinity adaptation. In the case of H. volcanii, proteins with a typical transient response to osmotic shock, induced by both hypo- and hyperosmotic conditions, probably corresponding to described heat shock proteins and showing the characteristics of general stress proteins, have also been identified. Cell recovery after a shift to low salinities was immediate in both organisms. In contrast, adaptation to higher salinities in both cases involved a lag period during which growth and general protein synthesis were halted, although the high-salt-related proteins were induced rapidly. In H. volcanii, this lag period corresponded exactly to the time needed for cells to accumulate adequate intracellular potassium concentrations, while extrusion of potassium after the down-shift was immediate. Thus, reaching osmotic balance must be the main limiting factor for recovery of cell functions after the variation in salinity.
机译:分别选择了火山嗜盐杆菌和长形嗜盐单胞菌作为嗜盐古生菌和细菌的代表,以在蛋白质合成水平上分析对各种摩尔渗透压浓度的响应。我们已经鉴定出一组高盐相关蛋白(H. elongata中为39、24、20和15.5 kDa; H。volcanii中为70、68、48和16 kDa),其合成速率随盐度的增加而增加。在低盐度下诱导了一组不同的蛋白质(长螺旋藻为60、42、15和6 kDa;火山嗜血杆菌为63、44、34、18、17和6 kDa),其中一些对于低盐度是独特的。盐条件。对于两种生物,特别是对于盐生古细菌,对低盐条件的适应比对高盐条件的适应具有更强和更具体的反应,这表明针对低盐度适应可能已经发展出独特的机制。在火山嗜血杆菌的情况下,还已经确定了由低渗和高渗条件诱导的对渗透压休克具有典型瞬时响应的蛋白,可能与所述热激蛋白相对应并显示出一般应激蛋白的特征。在两种生物中,向低盐度转变后的细胞恢复都是立即的。相反,在两种情况下,对高盐度的适应都需要一个停滞期,在此期间,生长和一般蛋白质的合成被停止,尽管高盐相关的蛋白质被迅速诱导。在火山嗜血杆菌中,该滞后时间恰好对应于细胞积累足够的细胞内钾浓度所需的时间,而在降档后立即挤出钾。因此,在盐度变化后,达到渗透平衡必须是恢复细胞功能的主要限制因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号