首页> 美国卫生研究院文献>ACS Omega >Two-Photon Nanolithography of Tailored Hollow three-dimensionalMicrodevices for Biosystems
【2h】

Two-Photon Nanolithography of Tailored Hollow three-dimensionalMicrodevices for Biosystems

机译:定制空心三维二维光子纳米光刻技术生物系统微设备

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Functional three-dimensional (3D) microstructures incorporating accessible interiors have emerged as a versatile platform for biosystem applications. By configuring their 3D geometric features, these biosystem microdevices can accurately evaluate and control targeted bioenvironments. However, classical fabrication techniques based on photolithography-etching processes cannot precisely and programmably control the geometric of the entire hollow 3D microstructures. Here, we proposed the use of a two-photon polymerization (TPP)-based technique for the precise, straightforward, and customizable preparation of hollow 3D microstructure devices with small opening(s). Factors governing the formation of hollow 3D biosystem microdevices, including material composition, laser input, and (post-) development treatment, have been systematically investigated and a set of optimized conditions are presented as a starting point for the development of novel hollow biosystem microdevices. To evaluate the broad applicability of this approach, a series of tailored hollow 3D microdevices with small opening(s), including amicropore, microneedle, microelectrode, microvalve, and micromachine,were successfully prepared using our direct laser writing-TPP technique.To further validate the feasibility of these biosystem microdevicesin practical implementations, we demonstrated the use of hollow 3Dmicropore devices for the robust resistive-pulse analysis of nanoparticles.
机译:结合可访问内部的功能性三维(3D)微结构已经成为生物系统应用程序的多功能平台。通过配置3D几何特征,这些生物系统微设备可以准确地评估和控制目标生物环境。然而,基于光刻蚀刻工艺的经典制造技术无法精确且可编程地控制整个中空3D微结构的几何形状。在这里,我们建议使用基于双光子聚合(TPP)的技术来精确,直接,可定制地制备具有小开口的中空3D微结构器件。系统地研究了控制空心3D生物系统微器件形成的因素,包括材料成分,激光输入和(后)显影处理,并提出了一组优化条件作为开发新型空心生物系统微器件的起点。为了评估这种方法的广泛适用性,一系列具有小开口的量身定制的中空3D微设备,包括微孔,微针,微电极,微阀和微机械,使用我们的直接激光写入-TPP技术成功制备。为了进一步验证这些生物系统微设备的可行性在实际的实现中,我们演示了空心3D的使用微孔装置可对纳米颗粒进行强大的电阻脉冲分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号