首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-14-mannanase from Amphibacillus xylanus
【2h】

Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-14-mannanase from Amphibacillus xylanus

机译:木洞双歧杆菌新型糖苷水解酶家族113β-14-甘露聚糖酶催化机理的结构见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

β-1,4-Mannanase degrades β-1,4-mannan polymers into manno-oligosaccharides with a low degree of polymerization. To date, only one glycoside hydrolase (GH) family 113 β-1,4-mannanase, from Alicyclobacillus acidocaldarius (AaManA), has been structurally characterized, and no complex structure of enzyme–manno-oligosaccharides from this family has been reported. Here, crystal structures of a GH family 113 β-1,4-mannanase from Amphibacillus xylanus (AxMan113A) and its complexes with mannobiose, mannotriose, mannopentaose, and mannahexaose were solved. AxMan113A had higher affinity for −1 and +1 mannoses, which explains why the enzyme can hydrolyze mannobiose. At least six subsites (−4 to +2) exist in the groove, but mannose units preferentially occupied subsites −4 to −1 because of steric hindrance formed by Lys-238 and Trp-239. Based on the structural information and bioinformatics, rational design was implemented to enhance hydrolysis activity. Enzyme activity of AxMan113A mutants V139C, N237W, K238A, and W239Y was improved by 93.7, 63.4, 112.9, and 36.4%, respectively, compared with the WT. In addition, previously unreported surface-binding sites were observed. Site-directed mutagenesis studies and kinetic data indicated that key residues near the surface sites play important roles in substrate binding and recognition. These first GH family 113 β-1,4-mannanase–manno-oligosaccharide complex structures may be useful in further studying the catalytic mechanism of GH family 113 members, and provide novel insight into protein engineering of GHs to improve their hydrolysis activity.
机译:β-1,4-甘露聚糖酶将低聚合度的β-1,4-甘露聚糖聚合物降解为甘露寡糖。迄今为止,只有来自酸热脂环酸杆菌(AaManA)的一个糖苷水解酶(GH)家族113β-1,4-甘露聚糖酶在结构上得到了表征,没有报道该家族的酶-甘露寡糖的复杂结构。在这里,解决了木糖双歧杆菌(AxMan113A)的GH家族113β-1,4-甘露聚糖酶的晶体结构及其与甘露二糖,甘露三糖,甘露戊糖和甘露糖的复合物。 AxMan113A对-1和+1甘露糖具有更高的亲和力,这解释了为什么该酶可以水解甘露二糖。凹槽中至少存在六个子位点(-4至+2),但是由于Lys-238和Trp-239形成的位阻,甘露糖单元优先占据子位点-4至-1。基于结构信息和生物信息学,进行了合理设计以增强水解活性。与WT相比,AxMan113A突变体V139C,N237W,K238A和W239Y的酶活性分别提高了93.7、63.4、112.9和36.4%。另外,观察到先前未报道的表面结合位点。定点诱变研究和动力学数据表明,表面位点附近的关键残基在底物结合和识别中起重要作用。这些第一个GH家族113β-1,4-甘露聚糖酶-甘露寡糖复合物结构可能有助于进一步研究GH家族113成员的催化机理,并为GHs的蛋白质工程改进其水解活性提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号