首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia
【2h】

Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia

机译:小鼠心脏缺血过程中亚硝酸盐对蛋白质S亚硝化的鉴定和定量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitrate (NO3) and nitrite (NO2) are known to be cardioprotective and to alter energy metabolism in vivo. NO3 action results from its conversion to NO2 by salivary bacteria, but the mechanism(s) by which NO2 affects metabolism remains obscure. NO2 may act by S-nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of S-nitrosation sites across the mammalian proteome, remain largely uncharacterized. Here we analyzed protein thiols within mouse hearts in vivo using quantitative proteomics to determine S-nitrosation site occupancy. We extended the thiol-redox proteomic technique, isotope-coded affinity tag labeling, to quantify the extent of NO2-dependent S-nitrosation of proteins thiols in vivo. Using this approach, called SNOxICAT (S-nitrosothiol redox isotope-coded affinity tag), we found that exposure to NO2 under normoxic conditions or exposure to ischemia alone results in minimal S-nitrosation of protein thiols. However, exposure to NO2 in conjunction with ischemia led to extensive S-nitrosation of protein thiols across all cellular compartments. Several mitochondrial protein thiols exposed to the mitochondrial matrix were selectively S-nitrosated under these conditions, potentially contributing to the beneficial effects of NO2 on mitochondrial metabolism. The permeability of the mitochondrial inner membrane to HNO2, but not to NO2, combined with the lack of S-nitrosation during anoxia alone or by NO2 during normoxia places constraints on how S-nitrosation occurs in vivo and on its mechanisms of cardioprotection and modulation of energy metabolism. Quantifying S-nitrosated protein thiols now allows determination of modified cysteines across the proteome and identification of those most likely responsible for the functional consequences of NO2 exposure.
机译:硝酸盐(NO3 -)和亚硝酸盐(NO2 -)具有心脏保护作用,并能改变体内能量代谢。 NO3 -的作用是唾液细菌将其转化为NO2 -的结果,但是NO2 -影响新陈代谢的机制仍然不清楚。 NO2 -可能通过S-亚硝化蛋白硫醇而起作用,从而改变蛋白活性。但是,这种情况如何发生,以及整个哺乳动物蛋白质组中S-亚硝化位点的功能重要性,在很大程度上仍然未知。在这里,我们使用定量蛋白质组学分析了小鼠心脏内的蛋白质硫醇,以确定S-亚硝化位点的占有率。我们扩展了硫醇-氧化还原蛋白组学技术,同位素编码的亲和标签标记,以量化体内蛋白质硫醇的NO2 -依赖性S-亚硝化的程度。使用这种称为SNOxICAT(S-亚硝基硫醇氧化还原同位素编码的亲和标签)的方法,我们发现在常氧条件下暴露于NO2 -或仅在局部缺血下暴露可使蛋白质硫醇的S-亚硝化程度最小。但是,暴露于NO2 -并伴有局部缺血,导致所有细胞区室中蛋白质硫醇的广泛S-亚硝化。在这些条件下,一些暴露于线粒体基质的线粒体蛋白硫醇被选择性地S-亚硝化,可能有助于NO2 -对线粒体代谢的有益作用。线粒体内膜对HNO2的渗透性,但对NO2 -的渗透性不佳,再加上单独的缺氧过程中S-亚硝化的缺乏或常氧过程中NO2 -的缺乏,限制了S-亚硝化如何在体内发生以及其心脏保护和能量代谢调节机制。现在,通过量化S-亚硝化的蛋白质硫醇,可以确定整个蛋白质组中修饰的半胱氨酸,并确定最有可能引起NO2 -暴露的功能后果的半胱氨酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号