首页> 美国卫生研究院文献>ACS Central Science >Topology Engineering of Proteins in Vivo Using GeneticallyEncoded Mechanically Interlocking SpyX Modulesfor Enhanced Stability
【2h】

Topology Engineering of Proteins in Vivo Using GeneticallyEncoded Mechanically Interlocking SpyX Modulesfor Enhanced Stability

机译:遗传算法在体内蛋白质的拓扑工程机械联锁的编码SpyX模块增强稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recombinant proteins are traditionally limited to linear configuration. Herein, we report in vivo protein topology engineering using highly efficient, mechanically interlocking SpyX modules named AXB and BXA. SpyX modules are protein domains composed of p53dim (X), SpyTag (A), and SpyCatcher (B). The p53dim guides the intertwining of the two nascent protein chains followed by autocatalytic isopeptide bond formation between SpyTag and SpyCatcher to fulfill the interlocking, leading to a variety of backbone topologies. Direct expression of AXB or BXA produces protein catenanes with distinct ring sizes. Recombinant proteins containing SpyX modules are obtained either as mechanically interlocked obligate dimers if the protein of interest is fused to the N- or C-terminus of SpyX modules, or as star proteins if the protein is fused to both N- and C-termini. As examples, cellular syntheses of dimers of (GB1)2 (where GB1 stands for immunoglobulin-binding domain B1 of streptococcal protein G) and of four-arm elastin-likestar proteins were demonstrated. Comparison of the catenation efficienciesin different constructs reveals that BXA is generally much more effectivethan AXB, which is rationalized by the arrangement of three domainsin space. Mechanical interlocking induces considerable stability enhancement.Both AXB and BXA have a melting point ∼20 °C higher thanthe linear controls and the BXA catenane has a melting point ~2 °Chigher than the cyclic control BX’A. Notably, four-arm elastin-likestar proteins demonstrate remarkable tolerance against trypsin digestion.The SpyX modules provide a convenient and versatile approach to constructunconventional protein topologies via the “assembly-reaction”synergy, which opens a new horizon in protein science for stabilityenhancement and function reinforcement via topology engineering.
机译:重组蛋白传统上限于线性构型。在这里,我们报告了使用高效,机械联锁的SpyX模块AXB和BXA进行的体内蛋白质拓扑工程。 SpyX模块是由p53dim(X),SpyTag(A)和SpyCatcher(B)组成的蛋白质结构域。 p53dim引导两条新生蛋白质链相互缠绕,随后在SpyTag和SpyCatcher之间形成自催化异肽键以实现互锁,从而导致多种主干拓扑。 AXB或BXA的直接表达产生具有不同环大小的蛋白链烯。如果目标蛋白融合到SpyX模块的N或C末端,则以机械连锁的专性二聚体形式获得含有SpyX模块的重组蛋白,如果蛋白融合到N和C末端,则以星形蛋白形式获得。例如,(GB1)2(其中GB1代表链球菌蛋白G的免疫球蛋白结合结构域B1)和四臂弹力蛋白样二聚体的细胞合成星蛋白被证明。串联效率的比较在不同的结构中发现BXA通常更有效比AXB(通过三个域的安排合理化)在太空。机械互锁可显着提高稳定性。AXB和BXA的熔点都比熔点高约20°C线性控件和BXA链烷的熔点约为2°C高于周期性控制BX’A。尤其是四臂弹性蛋白样星蛋白显示出对胰蛋白酶消化的显着耐受性。SpyX模块提供了一种方便且通用的构建方法通过“组装反应”获得非常规蛋白质拓扑协同作用,为蛋白质科学的稳定性开辟了新的视野通过拓扑工程进行增强和功能增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号