...
首页> 外文期刊>ACS Central Science >Topology Engineering of Proteins in Vivo Using Genetically Encoded, Mechanically Interlocking SpyX Modules for Enhanced Stability
【24h】

Topology Engineering of Proteins in Vivo Using Genetically Encoded, Mechanically Interlocking SpyX Modules for Enhanced Stability

机译:使用遗传编码的机械联锁SpyX模块进行体内蛋白质的拓扑工程,以增强稳定性

获取原文
           

摘要

Recombinant proteins are traditionally limited to linear configuration. Herein, we report in vivo protein topology engineering using highly efficient, mechanically interlocking SpyX modules named AXB and BXA. SpyX modules are protein domains composed of p53dim (X), SpyTag (A), and SpyCatcher (B). The p53dim guides the intertwining of the two nascent protein chains followed by autocatalytic isopeptide bond formation between SpyTag and SpyCatcher to fulfill the interlocking, leading to a variety of backbone topologies. Direct expression of AXB or BXA produces protein catenanes with distinct ring sizes. Recombinant proteins containing SpyX modules are obtained either as mechanically interlocked obligate dimers if the protein of interest is fused to the N- or C-terminus of SpyX modules, or as star proteins if the protein is fused to both N- and C-termini. As examples, cellular syntheses of dimers of (GB1)2 (where GB1 stands for immunoglobulin-binding domain B1 of streptococcal protein G) and of four-arm elastin-like star proteins were demonstrated. Comparison of the catenation efficiencies in different constructs reveals that BXA is generally much more effective than AXB, which is rationalized by the arrangement of three domains in space. Mechanical interlocking induces considerable stability enhancement. Both AXB and BXA have a melting point ~20 °C higher than the linear controls and the BXA catenane has a melting point ~2 °C higher than the cyclic control BX’A. Notably, four-arm elastin-like star proteins demonstrate remarkable tolerance against trypsin digestion. The SpyX modules provide a convenient and versatile approach to construct unconventional protein topologies via the “assembly-reaction” synergy, which opens a new horizon in protein science for stability enhancement and function reinforcement via topology engineering.
机译:重组蛋白传统上限于线性构型。在这里,我们报告了使用高效,机械联锁的SpyX模块AXB和BXA进行的体内蛋白质拓扑工程。 SpyX模块是由p53dim(X),SpyTag(A)和SpyCatcher(B)组成的蛋白质结构域。 p53dim指导两条新生蛋白质链的缠绕,然后在SpyTag和SpyCatcher之间形成自动催化的异肽键,以实现互锁,从而导致各种主干拓扑。 AXB或BXA的直接表达产生具有不同环大小的蛋白链烯。如果目标蛋白融合到SpyX模块的N端或C端,则以机械互锁的专性二聚体形式获得含SpyX模块的重组蛋白,如果蛋白融合到N端和C端,则以星形蛋白形式获得。作为例子,证明了(GB1)2(其中GB1代表链球菌蛋白G的免疫球蛋白结合结构域B1)和四臂弹性蛋白样星蛋白的二聚体的细胞合成。比较不同构造中的串联效率,发现BXA通常比AXB更有效,而AXB通过空间中三个域的排列而合理化。机械互锁可显着提高稳定性。 AXB和BXA的熔点都比线性对照品高约20°C,而BXA链烷的熔点则比环状对照品BX’A高约2°C。值得注意的是,四臂弹性蛋白样星蛋白对胰蛋白酶消化显示出显着的耐受性。 SpyX模块通过“组装-反应”协同作用提供了一种方便且通用的方法来构建非常规蛋白质拓扑,这为蛋白质科学通过拓扑工程增强稳定性和增强功能开辟了新的视野。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号