首页> 美国卫生研究院文献>Polymers >Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity
【2h】

Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity

机译:聚合物 - 石墨烯纳米复合材料上的非共价相互作用及其对电导率的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

It is well known that a small number of graphene nanoparticles embedded in polymers enhance the electrical conductivity; the polymer changes from being an insulator to a conductor. The graphene nanoparticles induce several quantum effects, non-covalent interactions, so the percolation threshold is accelerated. We studied five of the most widely used polymers embedded with graphene nanoparticles: polystyrene, polyethylene-terephthalate, polyether-ketone, polypropylene, and polyurethane. The polymers with aromatic rings are affected mainly by the graphene nanoparticles due to the π-π stacking, and the long-range terms of the dispersion corrections are predominant. The polymers with linear structure have a CH-π stacking, and the short-range terms of the dispersion corrections are the important ones. We used the action radius as a measuring tool to quantify the non-covalent interactions. This action radius was the main parameter used in the Monte-Carlo simulation to obtain the conductivity at room temperature (300 K). The action radius was the key tool to describe how the percolation transition works from the fundamental quantum levels and connect the microscopic study with macroscopic properties. In the Monte-Carlo simulation, it was observed that the non-covalent interactions affect the electronic transmission, inducing a higher mean-free path that promotes the efficiency in the transmission.
机译:众所周知,嵌入聚合物中的少量石墨烯纳米颗粒增强了电导率;聚合物从绝缘体变为导体。石墨烯纳米颗粒诱导几种量子效应,非共价相互作用,因此加速渗透阈值。我们研究了嵌入石墨烯纳米颗粒的五种最广泛使用的聚合物:聚苯乙烯,聚对苯二甲酸乙二醇酯,聚醚 - 酮,聚丙烯和聚氨酯。具有芳环的聚合物主要受到由于π-π堆叠引起的石墨烯纳米颗粒的影响,并且分散校正的远程术语是主要的。具有线性结构的聚合物具有CH-π堆叠,并且分散校正的短程术语是重要的。我们使用动作半径作为测量工具来量化非共价交互。该动作半径是Monte-Carlo模拟中使用的主要参数,以在室温(300k)处获得电导率。动作半径是描述渗透转变如何从基本量子水平工作并通过宏观性能连接微观研究的关键工具。在Monte-Carlo模拟中,观察到非共价相互作用影响电子传输,诱导促进变速器效率的更高的可自由路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号