首页> 美国卫生研究院文献>Entropy >Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise
【2h】

Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise

机译:由于量子射击噪声限制了基于激光的位置和速度测量的不确定性关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the ongoing progress of optoelectronic components, laser-based measurement systems allow measurements of position as well as displacement, strain and velocity with unbeatable speed and low measurement uncertainty. The performance limit is often studied for a single measurement setup, but a fundamental comparison of different measurement principles with respect to the ultimate limit due to quantum shot noise is rare. For this purpose, the Cramér-Rao bound is described as a universal information theoretic tool to calculate the minimal achievable measurement uncertainty for different measurement techniques, and a review of the respective lower bounds for laser-based measurements of position, displacement, strain and velocity at particles and surfaces is presented. As a result, the calculated Cramér-Rao bounds of different measurement principles have similar forms for each measurand including an indirect proportionality with respect to the number of photons and, in case of the position measurement for instance, the wave number squared. Furthermore, an uncertainty principle between the position uncertainty and the wave vector uncertainty was identified, i.e., the measurement uncertainty is minimized by maximizing the wave vector uncertainty. Additionally, physically complementary measurement approaches such as interferometry and time-of-flight positions measurements as well as time-of-flight and Doppler particle velocity measurements are shown to attain the same fundamental limit. Since most of the laser-based measurements perform similar with respect to the quantum shot noise, the realized measurement systems behave differently only due to the available optoelectronic components for the concrete measurement task.
机译:随着光电元件的持续进展,基于激光的测量系统允许测量位置以及具有无与伦比的速度和低测量不确定度的位移,应变和速度。通常研究了性能限制,用于单个测量设置,但不同测量原理相对于量子射击噪声引起的最终极限的基本比较是罕见的。为此目的,Cramér-Rao绑定被描述为通用信息理论工具,以计算不同测量技术的最小可实现的测量不确定度,以及对基于激光的位置,位移,应变和速度的基于激光测量的相应下界的综述呈现颗粒和表面。结果,不同测量原理的计算的Cramér-Rao界限具有类似的形式,每个测量和包括相对于光子的数量的间接比例,并且在例如位置测量的情况下,波数被平方。此外,鉴定了位置不确定度和波矢量不确定性之间的不确定原理,即,通过最大化波矢量不确定度最小化测量不确定性。另外,实际互补的测量方法,例如干涉测量和飞行时间定位测量以及飞行时间和多普勒粒子速度测量值,以获得相同的基本限制。由于大多数基于激光的测量值相对于量子射击噪声类似,所以实现的测量系统仅由于用于具体测量任务的可用光电子组件而行为不同。

著录项

  • 期刊名称 Entropy
  • 作者

    Andreas Fischer;

  • 作者单位
  • 年(卷),期 2019(21),3
  • 年度 2019
  • 页码 264
  • 总页数 19
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:光学计量;射击噪声限制;测量不确定性;Fisher信息;估计理论;Cramér-Rao不平等;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号