首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Roles of Long-range Electrostatic Domain Interactions and K+ in Phosphoenzyme Transition of Ca2+-ATPase
【2h】

Roles of Long-range Electrostatic Domain Interactions and K+ in Phosphoenzyme Transition of Ca2+-ATPase

机译:远程静电域相互作用和K +在Ca 2 + -ATPase的磷酸酶转变中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Sarcoplasmic reticulum Ca2+-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca2+ transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K+ is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes.
机译:肌质网Ca 2 + -ATPase将三个胞质结构域(A,P和N)的运动和重排与Ca 2 + 转运耦合。我们通过结合盐的静电筛选,计算机分析晶体结构电场和突变的系统方法,探索了限速磷酸酶(EP)过渡过程中静电力在域动力学中的作用。低的KCl浓度被激活,盐分增加到0.1 m以上会抑制EP过渡。跃迁速率的对数与蛋白质平均活性系数的平方的关系图给出了一个线性关系,该关系允许将激活能划分为静电成分和非静电成分,其中可屏蔽的静电力被盐屏蔽。结果表明,跃迁中的结构变化在空间上受到限制,但是当K + 特异结合在P结构域时,强大的静电力会起作用,以加速反应。电场分析显示,N和P结构域周围的铰链之间存在远距离静电相互作用。直接涉及的残基的突变和铰链处的其他带电残基的突变会平行破坏电场和结构转变。有利的静电显然为临界N域向P域运动提供了一条低能量路径,从而克服了空间限制。通常,此处使用的系统方法是了解酶的结构机理的有力工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号