首页> 美国卫生研究院文献>Biophysical Journal >Coarse-Grained Modeling of Pore Dynamics on the Red Blood Cell Membrane under Large Deformations
【2h】

Coarse-Grained Modeling of Pore Dynamics on the Red Blood Cell Membrane under Large Deformations

机译:大变形下红细胞膜上孔隙动力学的粗粒模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transient pore formation on the membrane of red blood cells (RBCs) under high mechanical tensions is of great importance in many biomedical applications, such as RBC damage (hemolysis) and mechanoporation-based drug delivery. The dynamic process of pore formation, growth, and resealing is hard to visualize in experiments. We developed a mesoscale coarse-grained model to study the characteristics of transient pores on a patch of the lipid bilayer that is strengthened by an elastic meshwork representing the cytoskeleton. Unsteady molecular dynamics was used to study the pore formation and reseal at high strain rates close to the physiological ranges. The critical strain for pore formation, pore characteristics, and cytoskeleton effects were studied. Results show that the presence of the cytoskeleton increases the critical strain of pore formation and confines the pore growth. Moreover, the pore recovery process under negative strain rates (compression) is analyzed. Simulations show that pores can remain open for a long time during the high-speed tank-treading induced stretching and compression process that a patch of the RBC membrane usually experiences under high shear flow. Furthermore, complex loading conditions can affect the pore characteristics and result in denser pores. Finally, the effects of strain rate on pore formation are analyzed. Higher rate stretching of membrane patch can result in a significant increase in the critical areal strain and density of pores. Such a model reveals the dynamic molecular process of RBC damage in biomedical devices and mechanoporation that, to our knowledge, has not been reported before.
机译:在高机械张力下,红细胞(RBCS)膜上的瞬时孔隙形成在许多生物医学应用中具有重要意义,例如RBC损伤(溶血)和基于机械浴的药物递送。孔隙形成,生长和重新密封的动态过程很难在实验中可视化。我们开发了一种Messcale粗粒模型,以研究通过代表细胞骨架的弹性网状作品加强的脂质双层膜上的瞬态孔的特性。使用不稳定的分子动力学用于研究孔形成并以接近生理范围的高应变率重新抗炎。研究了孔隙形成,孔隙特征和细胞骨架效应的临界应变。结果表明,细胞骨架的存在增加了孔隙形成的临界应变,并限制了孔生长。此外,分析了负应变速率(压缩)下的孔隙恢复过程。仿真显示在高速罐踩踏诱导的拉伸和压缩过程中,孔可以保持长时间保持开放,即RBC膜的贴片通常在高剪切流下经历。此外,复杂的装载条件会影响孔隙特性并导致更密集的孔隙。最后,分析了应变率对孔形成的影响。膜贴片的较高速率拉伸可能导致临界面积应变和孔密度的显着增加。这种模型揭示了生物医学装置中RBC损伤的动态分子过程,以及我们的知识之前尚未报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号